Math, asked by darlyvf, 8 months ago

50 - 60
60 – 70
If the mode of the distribution is 43.75, find p
Class
20 – 30 30 - 40 40 - 50
interval
Frequency
25
47
62
р
10​

Answers

Answered by mysticd
15

 Modal \:class : ( 40 - 50 ) ,

 Boundary \: limit (l) of \:modal \:class (f_{0})=40

 Class \:size (h) = 10

 Frequency \:of \:the \: modal \:class (f_{1}) = 62

 Frequency \:of \:class \: preceding \: the

 modal \:class (f_{0}) = 47

 Frequency \:of \:class \: succeeding \: the

 modal \:class (f_{2}) = p

Now, let us substitute these values in the formula:

 Mode= l + \Big( \frac{f_{1} - f_{0}}{2f_{1}-f_{0}-f_{2}}\Big) \times h

 \implies 40+\Big(\frac{62-47}{2\times 62-47-p}\Big)\times 10 = 43.75 \:(given)

 \implies \frac{15 \times 10}{124-47-p} =43.75-40

 \implies \frac{150}{77-p} = 3.75

 \implies 150 = 3.75(77-p)

 \implies 150 = 288.75 -3.75p

 \implies 3.75p = 288.75 - 150

 \implies 3.75p = 138.75

 \implies p = \frac{138.75}{3.75}

 \implies p = 37

Therefore.,

\red{ Value \: of \:p}\green { = 37 }

•••♪

Attachments:
Answered by sunnyvelasseril
2

Step-by-step explanation:

Mode= l + \Big( \frac{f_{1} - f_{0}}{2f_{1}-f_{0}-f_{2}}\Big) \times hMode=l+(2f1−f0−f2f1−f0)×h

\implies 40+\Big(\frac{62-47}{2\times 62-47-p}\Big)\times 10 = 43.75 \:(given)⟹40+(2×62−47−p62−47)×10=43.75(given)

\implies \frac{15 \times 10}{124-47-p} =43.75-40⟹124−47−p15×10=43.75−40

\implies \frac{150}{77-p} = 3.75⟹77−p150=3.75

\implies 150 = 3.75(77-p)⟹150=3.75(77−p)

\implies 150 = 288.75 -3.75p⟹150=288.75−3.75p

\implies 3.75p = 288.75 - 150⟹3.75p=288.75−150

\implies 3.75p = 138.75⟹3.75p=138.75

\implies p = \frac{138.75}{3.75}⟹p=3.75138.75

\implies p = 37⟹p=37

Therefore.,

\red{ Value \: of \:p}\green { = 37 }Valueofp=37

Similar questions