50 circular plates each of diameter 14 cm and thickness 0.5 cm are placed one above the other to form a right circular cylinder. Find its total surface area.
Answers
Answered by
11
Answer:
✔️the total surface area of the cylinder is 1408 cm²
Step-by-step explanation:
Solution:⤵️
Given,
- 50 circular plates each with diameter 14 cm
- 50 circular plates each with diameter 14 cmRadius of circular plates = 7cm
✔️Thickness of plates = 0.5 cm
✔️As these plates are one above the other, the total thickness of all the plates = 0.5 x 50 = 25 cm
↪️So, the total surface area of the right circular cylinder formed = 2πr × h + 2πr²
= 2πr (h + r)
= 2(22/7) x 7 x (25 + 7)
= 2 x 22 x 32 = 1408 cm²
Therefore, the total surface area of the cylinder is 1408 cm²
Answered by
0
Answer:
✔️the total surface area of the cylinder is 1408 cm²
Step-by-step explanation:
Solution:⤵️
Given,
- 50 circular plates each with diameter 14 cm
- 50 circular plates each with diameter 14 cmRadius of circular plates = 7cm
✔️Thickness of plates = 0.5 cm
✔️As these plates are one above the other, the total thickness of all the plates = 0.5 x 50 = 25 cm
↪️So, the total surface area of the right circular cylinder formed = 2πr × h + 2πr²
= 2πr (h + r)
= 2(22/7) x 7 x (25 + 7)
= 2 x 22 x 32 = 1408 cm²
Similar questions