Math, asked by singhvishal4309, 6 months ago

50.
एक ट्रेन की गति अपनी यात्रा के पहले घंटे के दौरान दूसरे घंटे
की तुलना में आधी है। इसके अलावा तीसरे घंटे के दौरान
इसकी गति, पहले दो घंटे के दौरान इसकी गति के योग को
दो-तिहाई है। यदि ट्रेन तीन घंटे के लिए उसी गति पर चलती
है जो गति से वह पहले घंटे के दौरान चली थी, तो वो
180 किमी कम चलती।
पहले तीन घंटे के लिए ट्रेन की औसत गति का पता लगाएं?
(a) 120 किमी/घंटा (b) 160 किमी/घंटा
(c) 180 किमी/घंटा
(d) 150 किमी/घंटा


PLZ SOVE THIS AS SOON AS POSSIBLE​

Answers

Answered by abhishekabh049
0

Answer:

(c) 180km/h is right option

Answered by anjukrishusachin
2

Answer:

option D

Step-by-step explanation:

let \: speed \: of \: train \: for \: fisrt \: hour= x km/h \\ </p><p>then \: speed \: of \: train \: for \: second \: hour= 2x km/h \\ </p><p>and \: speed \: of \: train \: for \: third \: hour =  \frac{2}{3} (x + 2x)  \\ =  \frac{2}{3}  \times 3x = 2x \\by \: distance = speed \:  \times time  \\ then \: distance \: covered \: by \: train \: in \: first \: hour = x \times 1 = x \: km \\ and \: distance \: covered \: by \: train \: in \: second \: hour = \: 2x \times 1 = 2x \: km \\ and \: distance \: covered \: by \: train \: in \: third \: hour = \: 2x \times 1 = 2x \: km \\ total \: distance \: covered \: by \: train \: in \: three \: hours = x + 2x + 2x \\  = 5x \: km \\ now \: according \: to \: question \\ if \: train \: runs \: on \: the \: speed \: of \: first \: hour \: for \: three \: hours \\ then \: \: total \:  distance \: covered \: by \: train \:  = x \times 3 = 3x \: km \\ according \: to \: question \\ 5x =3x +  180 \\ 5x - 3x = 180 \\ 2x = 180 \\ x =  \frac{180}{2}  \\ x = 90 \: \\ then \: distance \: covered \: in \: all \: three \: hours = 5x = 5 \times 90 = 450 \: km \\ \: averge \: speed \:  =  \frac{distance}{time}  =  \frac{450}{3}  = 150 \: kmph

hope it helps you

please mark as brainliest

Similar questions