Math, asked by ujjwalkharkwal11, 1 year ago

"""'"''50 MARKS""""''''

answer it

Attachments:

Answers

Answered by siddhartharao77
11

(16)

Given a^2 + b^2 + c^2 = 14.

⇒ (a + b + c)^2 ≥ 0.

We know that (a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ca)

⇒ 14 + 2(ab + bc + ca) ≥ 0

⇒ 2(ab + bc + ca) ≥ -14

⇒ ab + bc + ca ≥ -7     ------ (1)

---------------------------------------------------------------------------------------------------------------

⇒ (a - b)^2 + (b - c)^2 + (c - a)^2 ≥ 0

⇒ a^2 + b^2 - 2ab + b^2 + c^2 - 2bc + c^2 + a^2 - 2ac ≥ 0

⇒ 2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca ≥ 0

⇒ 2[a^2 + b^2 + c^2 - ab - bc - ca] ≥ 0

⇒ 2[14 - (ab + bc + ca)] ≥ 0

⇒ -(ab + bc + ca) ≥ - 14

⇒ ab + bc + ca ≤ 14.


Therefore, the range is [-7,14]


Hope this helps!


ujjwalkharkwal11: It is a mcq . Which option should i choose
siddhartharao77: 14
ujjwalkharkwal11: ok
TPS: Sir ji, it should be -7 na?
siddhartharao77: yes..it is..i have written -7 only na sirji!
TPS: Answer is perfect!
TPS: We should choose the -7 option.
TPS: I didn't know the second part that you have done: to get the max value. Thank you!
siddhartharao77: thank you sir!
Answered by Anonymous
12

answer in the attachment..

hope it helps ..pls.mark as verified by experts:)

T!—!ANKS!!!

Attachments:
Similar questions