"""'"''50 MARKS""""''''
answer it
Attachments:
Answers
Answered by
11
(16)
Given a^2 + b^2 + c^2 = 14.
⇒ (a + b + c)^2 ≥ 0.
We know that (a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ca)
⇒ 14 + 2(ab + bc + ca) ≥ 0
⇒ 2(ab + bc + ca) ≥ -14
⇒ ab + bc + ca ≥ -7 ------ (1)
---------------------------------------------------------------------------------------------------------------
⇒ (a - b)^2 + (b - c)^2 + (c - a)^2 ≥ 0
⇒ a^2 + b^2 - 2ab + b^2 + c^2 - 2bc + c^2 + a^2 - 2ac ≥ 0
⇒ 2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca ≥ 0
⇒ 2[a^2 + b^2 + c^2 - ab - bc - ca] ≥ 0
⇒ 2[14 - (ab + bc + ca)] ≥ 0
⇒ -(ab + bc + ca) ≥ - 14
⇒ ab + bc + ca ≤ 14.
Therefore, the range is [-7,14]
Hope this helps!
ujjwalkharkwal11:
It is a mcq . Which option should i choose
Answered by
12
answer in the attachment..
hope it helps ..pls.mark as verified by experts:)
T!—!ANKS!!!
Attachments:
Similar questions
Math,
7 months ago
Environmental Sciences,
1 year ago
English,
1 year ago
Social Sciences,
1 year ago
Science,
1 year ago