Chemistry, asked by nilaksan18, 4 months ago

50 mL of standard hard water (0.2 mg/mL CaCO3) consumed 11.2mL EDT
solution for complete titration in the presence of Erichrome black T indicator.
a. 50 mL tap water requires 16.8 mL of the same EDTA for complete titration
b. 250 mL of the same tap water boiled for 1 h filtered and diluted with
distilled water to original water. 50 mL of the sample needed 9.8 mL
EDTA.
c. 40 mL of calcium precipitating buffer was stirred into 200 mL tap water
and the precipitate filtered through dry apparatus. 60 mL of the filtrate
requires 8.4 mL EDTA.
Determine the strength of EDTA and various types of hardness

Answers

Answered by itzpikachu76
0

Explanation:

Solution

Given :-

\sf \implies \: Equation \: 3x + 4y - 9 = 0⟹Equation3x+4y−9=0

\sf \implies Point \: (1,3) \: and \: (2,7)⟹Point(1,3)and(2,7)

Let

\sf \implies \: Ratio \: = P \ratio \: 1⟹Ratio=P:1

Using section formula

\implies \sf \: p \bigg( \dfrac{x_2m + nx_1}{m + n} , \: \dfrac{y_2m + y_1n}{m + n} \bigg)⟹p(

m+n

x

2

m+nx

1

,

m+n

y

2

m+y

1

n

)

Where

\begin{gathered} \sf \implies \: x_1 = 1, y_1 = 3 \\ \sf \implies \: x_2 = 2,y_2 = 7\end{gathered}

⟹x

1

=1,y

1

=3

⟹x

2

=2,y

2

=7

\sf \implies \: m = p \: \: and \: n = 1⟹m=pandn=1

Now put the value on formula

\sf \implies\: p \bigg( \dfrac{2 \times p + 1 \times1}{p + 1} , \: \dfrac{7 \times p + 3 \times 1}{p + 1} \bigg)⟹p(

p+1

2×p+1×1

,

p+1

7×p+3×1

)

\sf \implies\: p \bigg( \dfrac{2p + 1 }{p + 1} , \: \dfrac{7 p + 3 }{p + 1} \bigg)⟹p(

p+1

2p+1

,

p+1

7p+3

)

Now put the value of x and y on Given equation

\sf \implies \: 3x + 4y - 9 = 0⟹3x+4y−9=0

\sf \implies3 \bigg( \dfrac{2p + 1}{p + 1} \bigg) + 4 \bigg( \dfrac{7p + 3}{p + 1} \bigg) - 9 = 0⟹3(

p+1

2p+1

)+4(

p+1

7p+3

)−9=0

\sf\implies \: \dfrac{6p + 3}{p + 1} + \dfrac{28p + 12}{p + 1} - 9 = 0⟹

p+1

6p+3

+

p+1

28p+12

−9=0

Takin Lcm

\sf \implies \: \dfrac{6p + 3 + 28p + 12 - 9p - 9}{p + 1} = 0⟹

p+1

6p+3+28p+12−9p−9

=0

\sf \implies\: 6p + 3 + 28p + 12 - 9p - 9 = 0⟹6p+3+28p+12−9p−9=0

\sf \implies \: 34p + 15 - 9p - 9 = 0⟹34p+15−9p−9=0

\sf \implies 25p + 6 = 0⟹25p+6=0

\sf \implies \: p = \dfrac{ - 6}{25}⟹p=

25

−6

Answer

The ratio is -6/25 or -6:25

 \sqrt[ \sqrt[ \sqrt[?]{?} ]{?} ]{?}  | | | | | | |?| | | | | | |

Similar questions