Math, asked by sanjeevkush, 1 year ago

50+points..☜☆☞50+Points

you are requested to solve this question by steps...


question number 19...

if A, B and C....in attatchment..

follow me..

I will mark u brainliest

Attachments:

Answers

Answered by aryanjha813
6
Use the triangle's angle sum property.

Hope it helped!

Aryan Jha
Attachments:

parmishverma70: hlo
parmishverma70: kaise ho
parmishverma70: or sunao
parmishverma70: why
Answered by Grimmjow
5

If A , B , C are Interior Angles of Triangle ABC, Then :

✿  Sum of Angles A , B , C of the Triangle ABC should be Equal to 180°

⇒ A + B + C = 180°

⇒ B + C = 180° - A

\mathsf{Given : Cosec^2(\frac{B + C}{2}) - Tan^2(\frac{A}{2})}

\mathsf{\implies Cosec^2(\frac{180 - A}{2}) - Tan^2(\frac{A}{2})}

\mathsf{\implies Cosec^2(\frac{180}{2} - \frac{A}{2} ) - Tan^2(\frac{A}{2})}

\mathsf{\implies Cosec^2(90 - \frac{A}{2} ) - Tan^2(\frac{A}{2})}

\mathsf{We\;know\;that : Cosec(90 - \theta) = Sec\theta}\\\\\mathsf{\implies Cosec^2(90 - \theta) = Sec^2\theta}\\\\\mathsf{\implies Cosec^2(90 - \frac{A}{2}) = Sec^2(\frac{A}{2})}

\mathsf{\implies Sec^2(\frac{A}{2}) - Tan^2(\frac{A}{2})}

\mathsf{We\;know\;that : Sec^2\theta - Tan^2\theta = 1}

\mathsf{\implies Sec^2(\frac{A}{2}) - Tan^2(\frac{A}{2}) = 1}

Similar questions