Math, asked by Sunoooooiiii, 1 year ago

50 Points ✌



If {x}^2 - {bx} + {c} =  ({x} + {p}) ({x} - {q}) then factorise {x}^2-{bxy} + {cy}^2

__________________​

Answers

Answered by shadowsabers03
97

We're given that  x^2-bx+c=(x+p)(x-q).

We can expand the RHS.

(x+p)(x-q)=x^2+px-qx-pq=x^2+(p-q)x-pq

Now,

x^2-bx+c=x^2+(p-q)x-pq

From both sides we get,

-b=p-q\ \ \ \ \ ;\ \ \ \ \ c=-pq

So,

x^2-bxy+cy^2\ \Longrightarrow\ x^2+(p-q)xy-(pq)y^2\\ \\ \\ \Longrightarrow\ x^2+pxy-qxy-pqy^2\ \Longrightarrow\ x(x+py)-qy(x+py)\\ \\ \\ \Longrightarrow\ \mathbf{(x+py)(x-qy)}

Hence factorized!

Or let me show you another method.

Consider  x^2-bxy+cy^2.  The value won't change on multiplying this by  \dfrac{y^2}{y^2}.

(x^2-bxy+cy^2 )\ \dfrac{y^2}{y^2}\ \ \Longrightarrow\ \ \dfrac{x^2-bxy+cy^2}{y^2}\times y^2\\ \\ \\ \Longrightarrow\ \left(\dfrac{x^2}{y^2}-\dfrac{bxy}{y^2}+\dfrac{cy^2}{y^2}\right)y^2\ \Longrightarrow\ \left(\left(\dfrac{x}{y}\right)^2-b\left(\dfrac{x}{y}\right)+c\right)y^2

Now this seems like  x^2-bx+c.  except  y^2.

If  x^2-bx+c=(x+p)(x-q),  then  \left(\dfrac{x}{y}\right)^2-b\left(\dfrac{x}{y}\right)+c\ =\ \left(\dfrac{x}{y}+p\right)\left(\dfrac{x}{y}-q\right).

So,

\left(\left(\dfrac{x}{y}\right)^2-b\left(\dfrac{x}{y}\right)+c\right)y^2\ =\ \left(\dfrac{x}{y}+p\right)\left(\dfrac{x}{y}-q\right)y^2

Here I split  y^2  as  y\times y,  so,

y\left(\dfrac{x}{y}+p\right)\left(\dfrac{x}{y}-q\right)y\ \Longrightarrow\ \mathbf{(x+py)(x-qy)}

Hence Factorized!

Answered by Anonymous
107

Hey there

refer to attachment

Attachments:
Similar questions