Math, asked by AnandMPC, 10 months ago

50 POINTS INTEGRATION PROBLEM

NO SPAM!!


integrate

\frac{ {x}^{2 } - 1 }{ {x}^{2}  + 1 } \frac{1}{ \sqrt{1 +  {x}^{2} } }dx
Need correct explanation

NO DIRECT answers

Answers

Answered by jayantsingh94
2

Answer:

Hello mate ,

see the above refer attachment! !

so hope u got your solution! !

Thank you! !!

Attachments:
Answered by Anonymous
101

♣ Qᴜᴇꜱᴛɪᴏɴ :

\sf{\int \dfrac{x^2-1}{x^2+1}\cdot \dfrac{1}{\sqrt{1+x^2}}dx}

♣ ᴀɴꜱᴡᴇʀ :

\boxed{\sf{\int \dfrac{x^2-1}{x^2+1}\cdot \dfrac{1}{\sqrt{1+x^2}}dx=-\dfrac{2x}{\sqrt{x^2+1}}+\ln \left|x+\sqrt{x^2+1}\right|+C}}

♣ ᴄᴀʟᴄᴜʟᴀᴛɪᴏɴꜱ :

\dfrac{x^{2}-1}{x^{2}+1}=-\dfrac{2}{x^{2}+1}+1

=\int \left(-\dfrac{2}{x^2+1}+1\right)\dfrac{1}{\sqrt{1+x^2}}dx

\text { Expand }\left(-\dfrac{2}{x^{2}+1}+1\right) \dfrac{1}{\sqrt{1+x^{2}}}: \dfrac{x^{2}}{\left(x^{2}+1\right)^{\tfrac{3}{2}}}-\dfrac{1}{\left(x^{2}+1\right)^{\tfrac{3}{2}}}

=\int \dfrac{x^2}{\left(x^2+1\right)^{\tfrac{3}{2}}}-\dfrac{1}{\left(x^2+1\right)^{\tfrac{3}{2}}}dx

\mathrm{Apply\:the\:Sum\:Rule}:\quad \int f\left(x\right)\pm g\left(x\right)dx=\int f\left(x\right)dx\pm \int g\left(x\right)dx

=\int \dfrac{x^2}{\left(x^2+1\right)^{\tfrac{3}{2}}}dx-\int \dfrac{1}{\left(x^2+1\right)^{\tfrac{3}{2}}}dx

\int\dfrac{x^2}{\left(x^2+1\right)^{\tfrac{3}{2}}}dx=-\dfrac{x}{\sqrt{1+x^2}}+\ln \left|x+\sqrt{1+x^2}\right|

\int \dfrac{1}{\left(x^2+1\right)^{\tfrac{3}{2}}}dx=\dfrac{x}{\sqrt{1+x^2}}

=-\dfrac{x}{\sqrt{1+x^2}}+\ln \left|x+\sqrt{1+x^2}\right|-\dfrac{x}{\sqrt{1+x^2}}

=-\dfrac{2x}{\sqrt{x^2+1}}+\ln \left|x+\sqrt{x^2+1}\right|

\mathrm{Add\:a\:constant\:to\:the\:solution}

\boxed{\sf{=-\dfrac{2x}{\sqrt{x^2+1}}+\ln \left|x+\sqrt{x^2+1}\right|+C}}

Similar questions