50 points:- plzzzzzz solve this question fast.
Attachments:
Answers
Answered by
0
e to the power -1/6
Explanation: lim x tends to zero , so,
sinx =x−x33!+x55!+x77!+⋯
this is an alternate series and if |x|<1
x−x33!x<sinx<x−x33!+x55!x
limx→0⎛⎝x−x33!x⎞⎠1x2=limx→0(1−x26)1x2
but making y=−x26
limx→0(1−x26)1x2=limy→0((1+y)1y)−16=e−16
Therefore
limx→0⎛⎝x−x33!+x55!x⎞⎠1x2=limx→0(1−x23!+x45!)1x2=e−16
Explanation: lim x tends to zero , so,
sinx =x−x33!+x55!+x77!+⋯
this is an alternate series and if |x|<1
x−x33!x<sinx<x−x33!+x55!x
limx→0⎛⎝x−x33!x⎞⎠1x2=limx→0(1−x26)1x2
but making y=−x26
limx→0(1−x26)1x2=limy→0((1+y)1y)−16=e−16
Therefore
limx→0⎛⎝x−x33!+x55!x⎞⎠1x2=limx→0(1−x23!+x45!)1x2=e−16
Answered by
0
Answer:
e−16
Explanation:
sinx=x−x33!+x55!+x77!+⋯
this is an alternate series and if |x|<1
x−x33!x<sinxx<x−x33!+x55!x
limx→0⎛⎝x−x33!x⎞⎠1x2=limx→0(1−x26)1x2
but making y=−x26
limx→0(1−x26)1x2=limy→0((1+y)1y)−16=e−16
analogously
limx→0⎛⎝x−x33!+x55!x⎞⎠1x2=limx→0(1−x23!+x45!)1x2=e−16
e−16
Explanation:
sinx=x−x33!+x55!+x77!+⋯
this is an alternate series and if |x|<1
x−x33!x<sinxx<x−x33!+x55!x
limx→0⎛⎝x−x33!x⎞⎠1x2=limx→0(1−x26)1x2
but making y=−x26
limx→0(1−x26)1x2=limy→0((1+y)1y)−16=e−16
analogously
limx→0⎛⎝x−x33!+x55!x⎞⎠1x2=limx→0(1−x23!+x45!)1x2=e−16
Similar questions