◆50 points question◆ fast friend solve this differential equation....
Attachments:
axel54:
hii priya
Answers
Answered by
0
is a linear differential equation of first order.It is a linear differential equation of first order.
(y−x)dydx=a2(y−x)dydx=a2
dydx=a2(y−x)dydx=a2(y−x)
dxdy=(y−x)a2dxdy=(y−x)a2
dxdy+xa2=ya2dxdy+xa2=ya2
It is a first order linear differential equation of typeIt is a first order linear differential equation of type
dxdy+P1x=Q1 WhereP1 and Q1 both are function of y alone or constant.dxdy+P1x=Q1 WhereP1 and Q1 both are function of y alone or constant.
P1=1a2,Q1=ya2P1=1a2,Q1=ya2
IF=e∫P1dyIF=e∫P1dy
=eya2=eya2
yeya2=∫ya2eya2dy+cyeya2=∫ya2eya2dy+c
Let ya2=tLet ya2=t
dy=a2dtdy=a2dt
yeya2=a2∫tetdt+cyeya2=a2∫tetdt+c
yeya2=a2et(t−1)+cyeya2=a2et(t−1)+c
yeya2=a2eya2(ya2−1)+c
(y−x)dydx=a2(y−x)dydx=a2
dydx=a2(y−x)dydx=a2(y−x)
dxdy=(y−x)a2dxdy=(y−x)a2
dxdy+xa2=ya2dxdy+xa2=ya2
It is a first order linear differential equation of typeIt is a first order linear differential equation of type
dxdy+P1x=Q1 WhereP1 and Q1 both are function of y alone or constant.dxdy+P1x=Q1 WhereP1 and Q1 both are function of y alone or constant.
P1=1a2,Q1=ya2P1=1a2,Q1=ya2
IF=e∫P1dyIF=e∫P1dy
=eya2=eya2
yeya2=∫ya2eya2dy+cyeya2=∫ya2eya2dy+c
Let ya2=tLet ya2=t
dy=a2dtdy=a2dt
yeya2=a2∫tetdt+cyeya2=a2∫tetdt+c
yeya2=a2et(t−1)+cyeya2=a2et(t−1)+c
yeya2=a2eya2(ya2−1)+c
Answered by
1
hlo mate your answer
Attachments:
Similar questions