Math, asked by anishka56, 10 months ago

⏩⏩50 points question⏪⏪

Harpreet borrowed rupees 20000 from her friend at 12% per annum simple interest. She lent it to Alam at the same rate but compounded annually. Find again after 2 years.

Answers

Answered by Agnel25
3

Answer:

Given:

Principal (P) = 20000

rate of interest (r) = 12%

time period (t) = 2

SI = t

100

=20000× 12×2

100

= 200×12×2

=200× 24

= 4800

hope it is helpful for u follow me ✌️✌️✌️✌️✌️✌️

Answered by Sharad001
36

Question :-

→ Given above ↑

Answer :-

→ 288

To Find :-

Difference of Compound interest and simple interest for 2 years .

Formula used :-

 \star \:  \:  \:  \boxed{ \sf{SI\:  =  \frac{P \:  \times N \times R}{100} }} \\  \\  \star \:  \:   \boxed{\sf{CI = P { \bigg(1 +  \frac{R}{100} \bigg) }^{N} }}

Step - by - step explanation :-

Given that ,

  • Principal (P) = ₹20,000

  • Rate ( R) = 12%

  • time (N) = 2 years

Solution :-

Firstly calculate Simple interest (SI)

 \implies \sf{ SI =   \frac{ \red{20000 } \green{\times 2 }\times 12}{ \orange{100}} } \\  \\  \implies  \boxed{\sf{  \orange{SI \:  =} \green{ 4800}} }\\  \\ \sf{ \blue{ total \:  }\:  \red{ amount} \:} \\   = 20000 + 4800  = 24800

Now calculate compound interest for 2 years

 \implies \sf{CI =  \pink{20000} { \bigg( \red{1 +  \frac{12}{100}} \bigg) }^{2} } \\  \\  \implies \sf{CI \:  = \green{ 20000 \times } \frac{28}{25}   \orange{\times  \frac{28}{25} }} \\  \\  \implies \boxed{ \sf{  \red{CI }=  \pink{25088}}} \\  \\ \text{ \pink{ therefore }\: \orange{ diffrence} \: is} \\  \:  \\  \implies \:  \orange{25088 }- \green{ 24800} \\  \\  \implies \: 288

__________________

Similar questions