Math, asked by Anonymous, 1 year ago

50 points..

show \: that \:  \frac{4 -  \sqrt{5} }{4 +  \sqrt{5} }  +  \frac{2}{5 +  \sqrt{3} }  +  \frac{4 +  \sqrt{5}  }{4 -  \sqrt{5} }  +  \frac{2}{5 -  \sqrt{3} }  =  \frac{52}{11}

Answers

Answered by waqarsd
5

</p><p>to \: show \: that \: \frac{4 - \sqrt{5} }{4 + \sqrt{5} } + \frac{2}{5 + \sqrt{3} } + \frac{4 + \sqrt{5} }{4 - \sqrt{5} } + \frac{2}{5 - \sqrt{3} } = \frac{52}{11} \\  \\  \frac{4 -  \sqrt{5} }{4 +  \sqrt{5} }  \\  \\  =  \frac{(4 -  \sqrt{5} )}{(4 +  \sqrt{5} )}  \frac{(4 -  \sqrt{5} )}{(4 -  \sqrt{5} )}  \\  \\  =   \frac{ {(4 -  \sqrt{5}) }^{2} }{16 - 5}  \\  \\  =  \frac{21 - 8 \sqrt{5} }{11}  \\  \\ \  \frac{4  +   \sqrt{5} }{4  -   \sqrt{5} }  \\  \\  =  \frac{(4  +  \sqrt{5} )}{(4  -   \sqrt{5} )}  \frac{(4  +   \sqrt{5} )}{(4  +   \sqrt{5} )}  \\  \\   =  \frac{ {(4 +  \sqrt{5} )}^{2} }{16 - 5}  \\  \\  =  \frac{21 + 8 \sqrt{5} }{11}  \\  \\  \frac{2}{5 +  \sqrt{3} }  \\  \\  =  \frac{2}{(5 +  \sqrt{3} )}  \frac{(5 -  \sqrt{3}) }{(5 -  \sqrt{3}) }  \\  \\  =  \frac{10 - 2 \sqrt{3} }{25 - 3}  \\  \\  =  \frac{10 - 2 \sqrt{3} }{22}  \\  \\  =  \frac{5 -  \sqrt{3} }{11}   \\  \\ \frac{2}{5  -   \sqrt{3} }  \\  \\  =  \frac{2}{(5  -   \sqrt{3} )}  \frac{(5  +  \sqrt{3}) }{(5  +   \sqrt{3}) }  \\  \\  =  \frac{10  +  2 \sqrt{3} }{25 - 3}  \\  \\  =  \frac{10  +  2 \sqrt{3} }{22}  \\  \\  =  \frac{5  +  \sqrt{3} }{11}  \\  \\ now \\  \\ \frac{4 - \sqrt{5} }{4 + \sqrt{5} } + \frac{2}{5 + \sqrt{3} } + \frac{4 + \sqrt{5} }{4 - \sqrt{5} } + \frac{2}{5 - \sqrt{3} }  \\  \\  =  \frac{21 - 8 \sqrt{5} }{11}  +  \frac{5 -  \sqrt{3} }{11}  +  \frac{21 + 8 \sqrt{5} }{11}  +  \frac{5 +  \sqrt{3} }{11}  \\  \\  =  \frac{21 - 8 \sqrt{5}  + 5 -  \sqrt{3} + 21 + 8 \sqrt{5} + 5 +  \sqrt{3}   }{11}  \\  \\  =  \frac{52}{11}

hope it helps


Anonymous: thanks
Answered by shikha2019
0

Here is your answer ❤️❤️☺️☺️

.

.

.

.

.

.

Hope this helps you ❤️❤️☺️☺️

Attachments:
Similar questions