Math, asked by aditisinha506, 3 months ago

50. Solve dy/dx
= y^2tan 2x, given that y = 2 when x = 0.​

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

 \frac{dy}{dx}  =  {y}^{2}  \tan(2x)  \\

 \implies \frac{dy}{ {y}^{2} }  =  \tan(2x) dx \\

Integrating both sides,

 \implies  \int\frac{dy}{ {y}^{2} }  =   \int\tan(2x) dx \\

 \implies  - \frac{1}{y}  =  \frac{ \sec^{2} (2x) }{2}  + c \\

Since, y=2 when x=0, then,

 \implies  - \frac{1}{2}  =  \frac{1}{2}  + c \\

 \implies \: c  =  -  \frac{1}{4}  \\

so, required equation

 \implies -  \frac{1}{y} =   \frac{ \sec^{2} (2x) }{2}  -  \frac{1}{4}  \\

 \implies -  \frac{4}{y} =  2 \sec^{2} (2x) -  1  \\

 \implies \: y =  \frac{4}{1 - 2 \sec^{2} (2x) }  \\

Similar questions