Math, asked by rroy33159, 2 months ago

50. The numerator of a rational number is less than its denominator by 3. If the numerator becomes three times and the denominator is increased by 20, the new number becomes ⅛ Find the original number.​

Answers

Answered by Unexplained
2

Let the numerator of the rational number be X.

Then, the denominator of the rational number = X + 3

According to the question,

  • New denominator, after it is increased by 20, = X + 3 + 20 = X +23
  • Numerator after it becomes three times = 3 X

Now, According to the question,

  • \frac{3 X}{X + 23} = \frac{1}{8}
  • Or, 8 (3 X) = 1 (X + 23)      {Cross Multiplication}
  • Or, 24 X = X + 23
  • Or, 24 X - X = 23
  • Or, 23 X = 23
  • Or, X = 23/23
  • Or, X = 1

Now, the original number should be,

= \frac{ X}{X + 3}

=\frac{1 }{1+ 3}

= \frac{1}{4}  (Required Number)

Therefore, 1/4 is the original number.

Similar questions