Math, asked by Jghuggy4163, 11 months ago

500 persons are taking a dip into cuboidal pond which is 80m long and 50m broad.what is the rise of water level in the pond,if the average displacement of water by a person is 0.04m^3

Answers

Answered by fathimaroohee
1

Answer:

Step-by-step explanation:

hope it helps you

please mark as brainliest answer

Attachments:
Answered by nilesh102
2

\textbf{\huge\underline{\underline\red{solution} : -  }} \\  \\ \bold{\underline\purple{here \: we \: know}} \\  \\  \red{1.} \bold \blue{ \: length  \: (l)\: of \: cuboidal \: \: tank \: is \: 80 \: m .} \\ \red{2.} \bold \blue{ \: breadth  \:( b)\: of \: cuboidal \: tank \: is \: 50 \: m.} \\ \red{3.} \bold \blue{ \: displacement \: of \: water \: by \: a \: one \: } \\  \bold \blue{person \: in \: a \: tank \: is \:0.04 \:  {m}^{3} .} \\  \\ \underline \bold\red{so \:  \:displacement \: of \: water \: in \: a \: tank \: by \:} \\ \underline \bold\red{ 500 \: persons  }  =  \blue{500 \times0.04 = 20\: }\bold\blue{ {m}^{3}  \:  \:  \:  \: ..(1)} \\  \\  \underline \bold \purple{let \: height \: of \: cuboidal \: tank \: is \: h} \\  \\ \underline\bold\blue{to \: find \: volume \: of \: water \: in \: tank} \\  \\ \underline \bold \red{volume\: of \: cuboidal \: tank \: } =  \bold \purple{ l\times  b\times h} \\  \\  \bold \red{v.o.c.t} =  \bold \purple{80 \times 50 \times h} \\  \\ \bold \red{v.o.c.t} =  \bold \purple{(4000 \times h \: \: )  {m}^{3} \:  \:  \: ..(2) } \\  \\    \underline\bold\blue{as \: we\: know} \\  \\  \underline\bold\purple{volume \: of \: raised \: water \: in \: cuboidal } \\ \underline\bold\purple{tank \: is \: equal \: to \: displacement \: of \: water \: in } \\ \underline\bold\purple{ tank\: by \:500 \: person .} \\  \\ \underline\bold\red{hence} \\  \\ \bold\red{volume \: of \: raised \: water \: in \: cuboidal} \\\bold\red{tank \:}  = \bold\purple{ displacement \: of \: water \: in } \\ \bold\purple{ tank\: by \:500 \: person .} \\  \\   =  > \bold \blue{4000 \times h} = \bold \blue{20} \\  \\  =  > \bold \blue{h} = \bold \blue{ \frac{20}{4000}} = \bold \blue{ \frac{1}{200} } = \bold \blue{0.005 \: m} \\  \\   \underline \bold\red{Hence   \: \purple{0.005 \: m} \: level \: of \: water \: rise \: in \: tank.}

Similar questions