Math, asked by blablahhh, 1 year ago

500 persons have to dip in a rectangular tank which is 80 m long and 50 m broad. What is the rise in the level of water in the tank, if the average displacement of water by a person is 0.04 m³?​

Answers

Answered by mathsdude85
12
Answer:

The rise in water level of the rectangular tank is 50 m  = 0.5 cm  

Step-by-step explanation:

Given :  

Number of persons to dip in a rectangular tank = 500  

Length of a rectangular tank (l) = 80 m

Breadth of the rectangular tank (b) = 50 m

Average displacement of water by 1 person = 0.04 m³

Volume of water displaced by 500 persons = 500 × 0.04 = 20 m³ ………….(1)

Let ‘h’ m  be the height of the raised water .

Volume of the rectangular tank = length × breadth ×  height = lbh

= 80 × 50 × h m³ = 4000h m…… ……….(2)

Volume of the raised water in the rectangular tank  is equal to  the volume of water displaced by 500 persons.

Volume of the rectangular tank = Volume of water displaced by 500 persons  

4000h = 20 m³

[From eq 1 & 2]  

h = 20/4000 = 1/200 = 0.005 m  = 0.5 cm  

h = 0.005 m  = 0.5 cm  

Hence, The rise in water level of the rectangular tank is 0.005 m  = 0.5 cm  

HOPE THIS ANSWER WILL HELP YOU….
Answered by nilesh102
4

\textbf{\huge\underline{\underline\red{solution} : -  }} \\  \\ \bold{\underline\purple{here \: we \: know}} \\  \\  \red{1.} \bold \blue{ \: length  \: (l)\: of \: rectangle \: \: tank \: is \: 80 \: m .} \\ \red{2.} \bold \blue{ \: breadth  \:( b)\: of \: rectangle \: tank \: is \: 50 \: m.} \\ \red{3.} \bold \blue{ \: displacement \: of \: water \: by \: a \: one \: } \\  \bold \blue{person \: in \: a \: tank \: is \: 0.04 \:  {m}^{3} .} \\  \\ \underline \bold\red{so \:  \:displacement \: of \: water \: in \: a \: tank \: by \:} \\ \underline \bold\red{ 500 \: persons  }  =  \blue{500 \times 0.04 = 20 \: }\bold\blue{ {m}^{3}  \:  \:  \:  \: ..(1)} \\  \\  \underline \bold \purple{let \: height \: of \: rectangular \: tank \: is \: h} \\  \\ \underline\bold\blue{to \: find \: volume \: of \: water \: in \: tank} \\  \\ \underline \bold \red{volume\: of \: rectangular \: tank \: } =  \bold \purple{ l\times  b\times h} \\  \\  \bold \red{v.o.r.t} =  \bold \purple{80 \times 50 \times h} \\  \\ \bold \red{v.o.r.t} =  \bold \purple{(4000 \times h \: \: )  {m}^{3} \:  \:  \: ..(2) } \\  \\    \underline\bold\blue{as \: we\: know} \\  \\  \underline\bold\purple{volume \: of \: raised \: water \: in \: rectangular } \\ \underline\bold\purple{tank \: is \: equal \: to \: displacement \: of \: water \: in } \\ \underline\bold\purple{ tank\: by \:500 \: person .} \\  \\ \underline\bold\red{hence} \\  \\ \bold\red{volume \: of \: raised \: water \: in \: rectangular } \\\bold\red{tank \:}  = \bold\purple{ displacement \: of \: water \: in } \\ \bold\purple{ tank\: by \:500 \: person .} \\  \\   =  > \bold \blue{4000 \times h} = \bold \blue{20} \\  \\  =  > \bold \blue{h} = \bold \blue{ \frac{2  0}{4000}} = \bold \blue{ \frac{1}{200} } = \bold \blue{0.005 \: m} \\  \\   \underline \bold\red{Hence   \: \purple{0.005 \: m} \: level \: of \: water \: rise \: in \: tank.}

Similar questions