Math, asked by ankitadebnath647, 6 months ago

505×502 using identity find

Answers

Answered by PharohX
9

Step-by-step explanation:

identity \\ (x + a)(x  +  b) =  {x}^{2}  + (a + b)x + ab \\

505 \times 502 \\  = (500 + 5)(500 + 2) \\  =  {500}^{2}  + (5 + 2)500 + 5 \times 2 \\  = 250000 + 3500 + 10 \\  = 253510

Answered by Anonymous
12

\huge{\mathbb{\red{ANSWER:-}}}

\sf{505\times 502}

\sf{(500 + 5) (500 + 2)}

Using Identity :-

\sf{(x + a)(x + b)=x^{2} + (a + b)x + ab}

Solution :-

\sf{Here \: ,}

\sf{x = 500}

\sf{a = 5}

\sf{b = 2}

\sf{So \: ,}

\sf{(500)^{2} + (5 + 2)(500) + (5)(2)}

\sf{2,50,000 + 7(500) + 10}

\sf{2,50,000 + 3500 + 10}

\sf{2,53,510}

Extra Identities :-

1)\sf{(a + b)^{2} = a^{2} + 2ab + b^{2}}

2)\sf{(a - b)^{2} = a^{2} - 2ab + b^{2}}

3)\sf{(a^{2} - b^{2}) = (a + b) (a - b)}

4)\sf{(a + b)^{2} - (a - b)^{2} = 4ab}

Similar questions