5075,3584,2732 are divided by greatest number 'd', the remainder in each case is 'r', then (3d-2r)=
Answers
Answered by
42
The greatest number that will divide x, y and z leaving the same remainder in each case is = HCF of (x - y), (y - z) and (z - x).
So, difference between given numbers is:
⇒ 3584 - 2732 = 852
⇒ 5075 - 3584 = 1491
⇒ 5075 - 2732 = 2343
Then, Prime factors of 852, 1491 and 2343 are:
⇒ 852 = 2 * 2 * 3 * 71
⇒ 1491 = 3 * 7 * 71
⇒ 2343 = 3 * 11 * 71
HCF = 3 * 71 = 213 = d
∴ Remainder in each case is:
⇒ 5075/213 = 176 = r
⇒ 3584/213 = 176 = r
⇒ 2732/213 = 176 = r
Hence, (3d - 2r)
⇒ 3*213 - 2*176
⇒ 639 - 352
⇒ 287
Similar questions