Physics, asked by IamIronMan2004, 8 months ago

51.
1
Two point masses 1 and 2 move with uniform velocities
v, and v2, respectively. Their initial position vectors are
Fi and 7z , respectively. Which of the following should be
satisfied for the collision of the point masses?​

Answers

Answered by shadowsabers03
2

Correct Question:-

Two point masses 1 and 2 move with uniform velocities  \bf{v_1} and \bf{v_2} respectively. Their initial position vectors are  \bf{r_1} and \bf{r_2} respectively. What is the condition for the two point masses to collide with each other?

Solution:-

\setlength{\unitlength}{1mm}\begin{picture}(5,5)\put(0,0){\vector(2,3){20}}\put(20,30){\vector(3,2){30}}\put(0,0){\vector(4,1){40}}\put(40,10){\vector(1,4){10}}\put(0,0){\vector(1,1){50}}\footnotesize\put(5,18){$\bf{r_1}$}\put(22,1){$\bf{r_2}$}\put(27,43){$\mathbf{v_1}\mathsf{\Delta t}$}\put(47,27){$\mathbf{v_2}\mathsf{\Delta t}$}\put(27,22){$\bf{r_3}$}\end{picture}

Let the point masses collide each other after \sf{\Delta t} seconds of the beginning of their journey (assume they start to move simultaneously).

So the displacements of the two point masses are \bf{v_1}\sf{\Delta t} and \bf{v_2}\sf{\Delta t} respectively.

As in the fig., the particles attain same position vector \bf{r_3} during collision, which is given by,

\longrightarrow\bf{r_3=r_1+v_1}\sf{\Delta t\quad\quad\dots(1)}

Also,

\longrightarrow\bf{r_3=r_2+v_2}\sf{\Delta t\quad\quad\dots(2)}

Thus, from (1) and (2),

\longrightarrow\bf{r_1+v_1}\sf{\Delta t}=\bf{r_2+v_2}\sf{\Delta t}

\longrightarrow\bf{v_1}\sf{\Delta t}-\bf{v_2}\sf{\Delta t}=\bf{r_2-r_1}

\longrightarrow\bf{(v_1-v_2)}\sf{\Delta t}=\bf{r_2-r_1}

\longrightarrow\sf{\Delta t}=\bf{\dfrac{r_2-r_1}{v_1-v_2}}\sf{\quad\quad\dots(3)}

Since \sf{\Delta t} is scalar, we can take magnitude only in RHS of (3) as,

\longrightarrow\sf{\Delta t}=\bf{\dfrac{|r_2-r_1|}{|v_1-v_2|}}\sf{\quad\quad\dots(4)}

From (3) and (4),

\longrightarrow\bf{\dfrac{r_2-r_1}{v_1-v_2}=\dfrac{|r_2-r_1|}{|v_1-v_2|}}

By rule of alternendo,

\longrightarrow\bf{\dfrac{r_2-r_1}{|r_2-r_1|}=\dfrac{v_1-v_2}{|v_1-v_2|}}

\longrightarrow\underline{\underline{\bf{\dfrac{r_2-r_1}{|r_2-r_1|}=-\dfrac{v_2-v_1}{|v_2-v_1|}}}}

This means, the unit vector along the relative position vector of the two point masses should be equal to the negative unit vector along the relative velocity vector.

Similar questions