51.
If x2 - x + 1 = 0 then find the value of x18 + x15 + x12 +x9 +x6 + x3 + 18
Answers
Answered by
3
Given that
![x = \frac{1 + \sqrt{ - 3} }{2} x = \frac{1 + \sqrt{ - 3} }{2}](https://tex.z-dn.net/?f=x+%3D++%5Cfrac%7B1+%2B++%5Csqrt%7B+-+3%7D+%7D%7B2%7D+)
Convert this to polar form.
![x = \cos(60) + \sqrt{ - 1} \sin(60) x = \cos(60) + \sqrt{ - 1} \sin(60)](https://tex.z-dn.net/?f=x+%3D++%5Ccos%2860%29++%2B++%5Csqrt%7B+-+1%7D++%5Csin%2860%29+)
Then use De Moivre's Theorem to get
![{x}^{18} = \cos(60 \times 18) + { \sqrt{ - 1} }^{18} \sin(60 \times 18) \\ {x}^{18} = \cos(0) - \sin(0) \\ {x}^{18} = 1 - 0 = 1 {x}^{18} = \cos(60 \times 18) + { \sqrt{ - 1} }^{18} \sin(60 \times 18) \\ {x}^{18} = \cos(0) - \sin(0) \\ {x}^{18} = 1 - 0 = 1](https://tex.z-dn.net/?f=+%7Bx%7D%5E%7B18%7D++%3D++%5Ccos%2860+%5Ctimes+18%29++%2B++++%7B+%5Csqrt%7B+-+1%7D+%7D%5E%7B18%7D++%5Csin%2860+%5Ctimes+18%29++%5C%5C++%7Bx%7D%5E%7B18%7D++%3D++%5Ccos%280%29+++-++%5Csin%280%29++%5C%5C++%7Bx%7D%5E%7B18%7D++%3D+1+-+0+%3D+1)
Then use this again and again to get the values for the rest of the polynomials and then substitute to find the answer.
Good Luck!!
Convert this to polar form.
Then use De Moivre's Theorem to get
Then use this again and again to get the values for the rest of the polynomials and then substitute to find the answer.
Good Luck!!
Answered by
0
Answer:
Step-by-step explanation:
Similar questions