Math, asked by smruthipugazhendhi, 9 months ago

52
English
Number of possible point C such that area of AABC is 10 square unit where
A(0,6), B(8,0) and angleACB = 90°, is​

Answers

Answered by amitnrw
2

Given :  area of Δ ABC is 10 square units where A(0,6), B(8,0)  and angle ACB = 90°, is

To find : Number of possible point C

Solution:

Let say

C = ( x , y)

A = (0,6)  & B = (8,0) , C = ( x , y)

Area of triangle =  (1/2) |  0 (0 - y)  + 8 (y - 6)  +  x(6-0)|

= (1/2) |   8y - 48  +  6x |

= | 4y - 24 + 6x |

4y - 24 + 6x  =     ± 10

=> 4y + 6x   = 34  ,   14  

=> 2y + 3x = 17  , 7  

angle ACB = 90°,

AC & CB are perpendicular to each other

=>  Slope of AC * Slope of CB = - 1

=> (( y - 6 )/(x - 0) ) * ( ( y - 0)/(x - 8) ) = - 1

=> (y - 6  ) y  = - x(x - 8)

=> y² - 6y   = -x² + 8x

=>  x² + y² =  8x  + 6y

Case 1 : 2y + 3x = 7 => y = (7 - 3x)/2

=> x²  + ((7-3x)/2)²  = 8x  + 6 (7 - 3x)/2

=> x²  + ( 49  + 9x² - 42x)/4  = 8x  +  21 - 9x

=> 4x² + 49  + 9x² - 42x = -4x + 84

=> 13x² - 38x  - 35  = 0

Two possible points

Case 2 : 2y + 3x = 17 => y = (17 - 3x)/2

=> x²  + ((17-3x)/2)²  = 8x  + 6 (17 - 3x)/2

=> x²  + ( 289  + 9x² - 102x)/4  = 8x  +  51 - 9x

=> 4x² + 289  + 9x² - 102x = -4x + 204

=> 13x² - 98x  +85   = 0

Two possible points

Hence total 4 possible points C such that area of Δ ABC is 10 square units where A(0,6), B(8,0) and angle ACB = 90°

if we simply understand then AB is diameter of cirlcle

& a circle with Radius 5   &  point C lies on a Height of 2 from Diameter will form a right angle triangle with area 10

Hence 4 possible triangles

Learn more:

The vertices of a A ABC are A(-5, -1), B(3.-5), C(5,2).

https://brainly.in/question/8993582

D is mid point of side BC of triangle ABC and E is the mid point of BD ...

https://brainly.in/question/7688610

Attachments:
Similar questions