Math, asked by aryagunaseelan45, 11 months ago

52y^3(72y^2-98)÷117y^2(6y-7)

Answers

Answered by 5anmolukey
2

Answer:

Final result :

 8y5 • (6y + 7) • (6y - 7)2

 ——————————————————————————

             9              

Step by step solution :

Step  1  :

Equation at the end of step  1  :

             ((23•32y2)-98)  

 (((52•(y3))•——————————————)•y2)•(6y-7)

                  117      

Step  2  :

           72y2 - 98

Simplify   —————————

              117    

Step  3  :

Pulling out like terms :

3.1     Pull out like factors :

  72y2 - 98  =   2 • (36y2 - 49)  

Trying to factor as a Difference of Squares :

3.2      Factoring:  36y2 - 49  

Theory : A difference of two perfect squares,  A2 - B2  can be factored into  (A+B) • (A-B)

Proof :  (A+B) • (A-B) =

        A2 - AB + BA - B2 =

        A2 - AB + AB - B2 =

        A2 - B2

Note :  AB = BA is the commutative property of multiplication.

Note :  - AB + AB equals zero and is therefore eliminated from the expression.

Check :  36  is the square of  6  

Check : 49 is the square of 7

Check :  y2  is the square of  y1  

Factorization is :       (6y + 7)  •  (6y - 7)  

Equation at the end of step  3  :

             2•(6y+7)•(6y-7)

 (((52•(y3))•———————————————)•y2)•(6y-7)

                   117      

Step  4  :

Equation at the end of step  4  :

             2•(6y+7)•(6y-7)

 (((22•13y3)•———————————————)•y2)•(6y-7)

                   117      

Step  5  :

Multiplying exponents :

5.1    22  multiplied by  21   = 2(2 + 1) = 23

Canceling Out :

5.2      Canceling out  13  as it appears on both sides of the fraction line

Equation at the end of step  5  :

  8y3 • (6y + 7) • (6y - 7)

 (————————————————————————— • y2) • (6y - 7)

              9            

Step  6  :

Multiplying exponential expressions :

6.1    y3 multiplied by y2 = y(3 + 2) = y5

Equation at the end of step  6  :

 8y5 • (6y + 7) • (6y - 7)

 ————————————————————————— • (6y - 7)

             9            

Step  7  :

Multiplying Exponential Expressions :

7.1    Multiply  (6y-7)  by  (6y-7)  

The rule says : To multiply exponential expressions which have the same base, add up their exponents.

In our case, the common base is  (6y-7)  and the exponents are :

         1 , as  (6y-7)  is the same number as  (6y-7)1  

and   1 , as  (6y-7)  is the same number as  (6y-7)1  

The product is therefore,  (6y-7)(1+1) = (6y-7)2  

Final result :

 8y5 • (6y + 7) • (6y - 7)2

 ——————————————————————————

             9             PLEASE MARK ME BRAINLIST

Answered by vedamshreddy0101
1

Answer:

ughtlojfgchdhfgdhfhfgfgfgdgdhfb

Similar questions