Math, asked by vrinda6283, 5 months ago


53) Solve the equation using substitution and elimination method. x + y = 5 and 2x -3y=4​

Answers

Answered by asegurola18
1

Answer:

Step-by-step explanation:

x+y=5

2x-3y=4​

Step 1: Solve one of the equations for either x = or y = . We will solve the first equation for y.

x+y=5

y=5-x

Step 2: Substitute the solution from step 1 into the second equation.

2x-3y=4

2x-3(5-x)=4

Step 3: Solve this new equation.

2x-3(5-x)=4

2x-15+3x=4

5x-15=4

5x-15+15=4+15

5x=19

x=3.8

Answered by brainlyofficial11
2

Answer

we have, two equations

  • x + y = 5 ........(i)
  • 2x - 3y = 4 ........(ii)

_________________________

first solve by using substitution method

from eq(i) we get,

x = 5 - y .........(iii)

now, substitute the value of x from (iii) in (ii)

 \bold{↦ \: 2(5 - y)  - 3y = 4} \\    \\  \bold{↦ \: 10 - 2y - 3y = 4} \\  \\  \bold{↦ \: 10 - 5y = 4} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \\  \\  \bold{↦ \: 5y = 10 - 4} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \bold{  ↦ \: 5y = 6} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \bold{↦ \: \boxed{ \pink {\bold{ y =  \frac{6}{5}} }}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

now, substitute the value of y in (iii)

 \bold{↦ \: x = 5 -  \frac{6}{5} }  \:  \: \\  \\  \bold{↦ \:x =  \frac{25 - 6}{5}  } \\  \\  \bold{↦  \boxed{  \pink{\bold{\: x =  \frac{19}{5} }}}} \:  \:  \:  \:

hence,

value of x is 19/5 and value of y is 6/5

__________________________

now, solve by using elimination method

we have,

  • x + y = 5 ........(i)
  • 2x - 3y = 4 .......(ii)

multiply eq.(i) by 2

➪ 2(x + y) = 5 × 2

➪ 2x + 2y = 10 ........(iii)

now, subtract eq.(ii) from .(iii)

 \bold{↦ \: 2x + 2y - (2x - 3y) = 10 - 4} \\  \\  \bold{↦ \:  \cancel{2x} + 2y -  \cancel{2x} + 3y = 6} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \bold{↦ \:2y + 3y = 6 } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \bold{↦ \: 5y = 6} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \bold{↦  \boxed {  \pink{\bold{\:y =  \frac{6}{5}  }}}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

now, putting value of y in eq.(i)

 \bold{↦ \:x +  \frac{6}{5}  = 5 }  \:  \: \\  \\  \bold{↦ \: x = 5 -  \frac{6}{5} }  \:  \: \\  \\  \bold{↦ \: x =  \frac{25 - 6}{5} } \\  \\  \bold{↦ \: \boxed{  \pink{\bold{ x =  \frac{19}{5} }}}} \:  \:  \:  \:

hence, value of x is 19/5 and value of y is 6/5

Similar questions