53. The Mode of given frequency distribution is 37. Findthe missing frequency x.
Class
0-10
10-20
20-30
30-40
40-50
50-60
60-70
frequency
4.
7.
х
18
15
8
7
Answers
⠀⠀⠀⠀
Here, Maximum frequency is 18.
- Then, the corresponding class 30-40 is the model class.
⠀⠀⠀⠀
Here,
Answer:
⠀⠀⠀⠀
Here, Maximum frequency is 18.
Then, the corresponding class 30-40 is the model class.
⠀⠀⠀⠀
\begin{gathered}\begin{gathered}\dag\;{\underline{\frak{Formula\:of\:Mode\:is\:given\:by,}}}\\ \\\end{gathered}\end{gathered}
†
FormulaofModeisgivenby,
\begin{gathered}\begin{gathered}\star\;{\boxed{\sf{\pink{Mode = l + \dfrac{f_1 - f_0}{2f_1 - f_0 - f_2} \times h}}}}\\ \\\end{gathered}\end{gathered}
⋆
Mode=l+
2f
1
−f
0
−f
2
f
1
−f
0
×h
Here,
\sf Lower\:limit\:of\;class,\:l = \bf{30}Lowerlimitofclass,l=30
\sf Class\:interval,\:h = 40 - 30 = \bf{10}Classinterval,h=40−30=10
\sf Frequency\:of\:Median\;class\:,f_1 = \bf{18}FrequencyofMedianclass,f
1
=18
\sf Frequency\:of\:preceding\;class\:,f_0 = \bf{x}Frequencyofprecedingclass,f
0
=x
\sf Frequency\:of\: succeeding\;class\:,f_2 = \bf{15}Frequencyofsucceedingclass,f
2
=15
\begin{gathered}\begin{gathered}\dag\;{\underline{\frak{Putting\:values\:in\:formula,}}}\\ \\ \\:\implies\sf 37 = 30 + \dfrac{18 - x}{2 \times 18 - x - 15} \times 10\\ \\ \\:\implies\sf 37 - 30 =\dfrac{18 - x}{36 - x - 15} \times 10\\ \\ \\:\implies\sf 7 = \dfrac{18 - x}{21 - x} \times 10\\ \\ \\:\implies\sf 7(21 - x) =10(18 - x)\\ \\ \\:\implies\sf 147 - 7x = 180 - 10x\\ \\ \\ :\implies\sf - 7x + 10x = 180 - 147\\ \\ \\:\implies\sf 3x = 33\\ \\ \\:\implies\sf x = \cancel{\dfrac{33}{3}}\\ \\ \\ :\implies{\underline{\boxed{\pmb{\frak{\purple{x = 11}}}}}}\;\bigstar\\ \\\end{gathered}\end{gathered}
†
Puttingvaluesinformula,
:⟹37=30+
2×18−x−15
18−x
×10
:⟹37−30=
36−x−15
18−x
×10
:⟹7=
21−x
18−x
×10
:⟹7(21−x)=10(18−x)
:⟹147−7x=180−10x
:⟹−7x+10x=180−147
:⟹3x=33
:⟹x=
3
33
:⟹
x=11
x=11
★
\therefore\:{\underline{\sf{The\:value\:of\:Missing\:Frequency\:(x)\:is\: {\textsf{\textbf{11}}}.}}}∴
ThevalueofMissingFrequency(x)is11.