Physics, asked by kaurganiv123, 3 months ago

53. Three rods (lengths 2L,L,L) made of the same material and having the same area of cross-section
are joined as shown in figure. The end points A, B and C are maintained at constant temperatures
100°C, 50°C and 0°C, respectively. Assuming that there is no loss of heat from the surface of
the rods, find the temperature that the junction P ultimately reaches
A 50°C

B. 40°C

C 30°C

D 20°C​

Attachments:

Answers

Answered by shadowsabers03
11

The given arrangement is,

\setlength{\unitlength}{1mm}\begin{picture}\thicklines\put(-50,0){\line(1,0){50}}\put(0,0){\line(1,1){17.6777}}\put(0,0){\line(1,-1){17.6777}}\put(-53,-5){\sf{A}}\put(-3,-5){\sf{P}}\put(18,20){\sf{B}}\put(18,-22){\sf{C}}\put(-25,-5){\sf{2L}}\put(6,10){\sf{L}}\put(6,-12){\sf{L}}\multiput(-50,0)(50,0){2}{\circle*{1}}\multiput(17.6777,17.6777)(0,-35.3554){2}{\circle*{1}}\end{picture}

which can be arranged as an electrical circuit where,

  • resistance of rod is taken as resistance of current carrying wire.
  • thermal conductivity of the rod is taken as electrical conductivity of the wire.
  • heat current is taken as electrical current.
  • temperature difference is taken as potential difference.

like,

\setlength{\unitlength}{1mm}\begin{picture}\thicklines\put(-50,0){\line(1,0){15}}\put(-15,0){\line(1,0){15}}\put(0,0){\line(1,1){5}}\qbezier(15,15)(16.33885,16.33885)(17.6777,17.6777)\put(0,0){\line(1,-1){5}}\qbezier(15,-15)(16.33885,-16.33885)(17.6777,-17.6777)\put(-53,-5){\sf{A}}\put(-3,-5){\sf{P}}\put(18,20){\sf{B}}\put(18,-22){\sf{C}}\put(-27,-5){\sf{2L}}\put(6,13){\sf{L}}\put(6,-14){\sf{L}}\multiput(-50,0)(50,0){2}{\circle*{1}}\multiput(17.6777,17.6777)(0,-35.3554){2}{\circle*{1}}\multiput(-35,0)(4,0){5}{\qbezier(0,0)(1,1)(2,2)\qbezier(2,2)(3,1)(4,0)}\multiput(5,5)(2,2){5}{\qbezier(0,0)(0,1)(0,2)\qbezier(0,2)(1,2),(2,2)}\multiput(5,-5)(2,-2){5}{\qbezier(0,0)(0,-1)(0,-2)\qbezier(0,-2)(1,-2),(2,-2)}\put(-5,0){\vector(1,0){0}}\put(4,4){\vector(1,1){0}}\put(4,-4){\vector(1,-1){0}}\put(-8,3){$\sf{i_1}$}\put(0,5){$\sf{i_2}$}\put(5,-3){$\sf{i_3}$}\end{picture}

Now the potential at point,

  • A, \sf{V_A=100\ V}
  • B, \sf{V_B=50\ V}
  • C, \sf{V_C=0\ V}

Here the three wires having same cross sectional area \sf{A} are of same material so they have same resistivity \sf{\rho.}

We know the resistance of a wire is given by,

  • \sf{R=\dfrac{\rho L}{A}}

The resistance of the wire AP,

  • \sf{R_1=\dfrac{\rho(2L)}{A}=\dfrac{2\rho L}{A}}

The resistance of the wire PB,

  • \sf{R_2=\dfrac{\rho L}{A}}

The resistance of the wire PC,

  • \sf{R_3=\dfrac{\rho L}{A}}

By Ohm's Law, the current through the wire AP,

\sf{\longrightarrow i_1=\dfrac{V_P-V_A}{R_1}}

\sf{\longrightarrow i_1=\dfrac{(V_P-100)A}{2\rho L}}

The current through the wire PB,

\sf{\longrightarrow i_2=\dfrac{V_B-V_P}{R_2}}

\sf{\longrightarrow i_2=\dfrac{(50-V_P)A}{\rho L}}

The current through the wire PC,

\sf{\longrightarrow i_3=\dfrac{V_C-V_P}{R_3}}

\sf{\longrightarrow i_3=-\dfrac{V_PA}{\rho L}}

Applying Junction Rule at the junction P,

\sf{\longrightarrow i_1=i_2+i_3}

\sf{\longrightarrow\dfrac{(V_P-100)A}{2\rho L}=\dfrac{(50-V_P)A}{\rho L}-\dfrac{V_PA}{\rho L}}

\sf{\longrightarrow\dfrac{V_P-100}{2}=50-2V_P}

\sf{\longrightarrow V_P=40\ V}

So in the actual question, the temperature at the junction P will be,

\sf{\longrightarrow\underline{\underline{T_P=40^oC}}}

Hence (B) is the answer.

Similar questions
Math, 3 months ago