Math, asked by venkatkg0630, 1 month ago

54. If a and B are the zeroes of 1 point the quadratic polynomial x2 - 6x +k, then the value of k when 3a+2B =20 is ​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:\alpha, \: \beta \: are \: roots \: of \: quadratic \: polynomial \:  {x}^{2} - 6x + k

and

\rm :\longmapsto\:3\alpha + 2\beta = 20 -  -  - (1)

We know,

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

\bf\implies \: \alpha   + \beta  =  -  \: \dfrac{( - 6)}{1} = 6

Now, we have from equation (1),

\rm :\longmapsto\:3\alpha + 2\beta = 20

\rm :\longmapsto\:\alpha + 2\alpha + 2\beta = 20

\rm :\longmapsto\:\alpha + 2(\alpha + \beta) = 20

\rm :\longmapsto\:\alpha + 2 \times 6 = 20

\red{\bigg \{ \because \: \alpha + \beta  \: =\: 6\bigg \}}

\rm :\longmapsto\:\alpha + 12 = 20

\rm :\longmapsto\:\alpha = 20 - 12

\bf\implies \: \alpha  = 8

Now,

\rm :\longmapsto\:\alpha + \beta = 6

\rm :\longmapsto\:8 + \beta = 6

\rm :\longmapsto\:\beta = 6 - 8

\bf\implies \:\beta =  - 2

Now, we know that,

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

\bf\implies \:\alpha\beta = \dfrac{k}{1}

\bf\implies \:k = (8)( - 2) =  - 16

Additional Information :-

For cubic polynomial,

\red{\rm :\longmapsto\: \alpha , \beta , \gamma  \: are \: zeroes \: of \: a {x}^{3}  + b {x}^{2} +  cx + d, \: then}

\boxed{ \bf{ \:  \alpha  +  \beta  +  \gamma  =  - \dfrac{b}{a}}}

\boxed{ \bf{ \:  \alpha  \beta  +  \beta  \gamma  +  \gamma  \alpha  =   \dfrac{c}{a}}}

\boxed{ \bf{ \:  \alpha  \beta  \gamma  =  - \dfrac{d}{a}}}

Similar questions