Physics, asked by IamIronMan2004, 11 months ago


55.
Two horizontal forces of magnitudes 10 N and P N act on
a particle. The force of magnitude 10 N acts due west and
the force of magnitude P N acts on a bearing of 30° east of
north as shown in figure. The resultant of these two force
acts due north. Find the magnitude of this resultant.
PN
309
10 N
(1) 10/2 N
(3) 12.15 N
(2) 1513 N
(4) 10/3 N

Attachments:

Answers

Answered by pardhupaddu
5

Answer:

option 4 is our choice my friend check your answer...

Attachments:
Answered by BrainlyConqueror0901
15

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Resultant\:force=10\sqrt{3}\:N}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies Angle \: between  \: resultant \: vector \: and \: P \: N = 30 \degree \\  \\ \tt: \implies  Force \: acting \: in \: west = 10 \: N\\  \\  \red{\underline \bold{To \: find :}} \\  \tt:  \implies Magnitude \: of \: resultant =?

• According to given question :

 \bold{Breaking \: force \: P\: in \: component : } \\ \tt: \implies Force \:acting \:  in \: north \: direction =P\: cos \theta \\  \\ \tt: \implies Force \: acting \: in \: east \: direction  = P \: sin \:  \theta \\  \\  \bold{As \: we \: know \: that} \\  \tt:  \implies P\:sin \: \theta = 10 \\  \\ \tt:  \implies P \: sin \: 30 \degree = 10 \\  \\ \tt:  \implies P \times  \frac{1}{2}  = 10 \\  \\   \green{\tt:  \implies P = 20 \: N} \\  \\  \bold{For \: Resultant \: force: } \\ \tt:  \implies Resultant \: force= P \: cos \:  \theta \\  \\ \tt:  \implies Resultant \: force = 20 \times cos \:  30 \degree \\  \\ \tt:  \implies Resultant \: force= 20 \times  \frac{ \sqrt{3} }{2}  \\  \\  \green{\tt:  \implies Resultant \: force =10 \sqrt{3} \: N}

Similar questions