555555...n terms. Change this term into G.P. then find the sum of this series?
Answers
Answered by
1
5+55+555+..........n
=5 (1+11+111+........n terms)
= 5 /9 (9+99+999+....... nterms )
= 5/9 ( (10 -1 ) + (100-1) + (1000-1) +.....nterms )
= 5/9 [(10 +100 + 1000 +......n terms (GP series ) ) - (1+1+1+1.......n terms )]
= 5/9 [ 10 ((10)n -1) / 10-1 ] - n ]
= 5/9 [ 10 (10n -1) /9 - n ]
= 5 /81 [ 10 (10n -1) - 9n ]
Answered by
1
Answer:
Step-by-step explanation:
5 (1+11+111+........n terms)
= 5 /9 (9+99+999+....... nterms )
= 5/9 ( (10 -1 ) + (100-1) + (1000-1) +.....nterms )
= 5/9 [(10 +100 + 1000 +......n terms (GP series ) ) - (1+1+1+1.......n terms )]
= 5/9 [ 10 ((10)n -1) / 10-1 ] - n ]
= 5/9 [ 10 (10n -1) /9 - n ]
= 5 /81 [ 10 (10n -1) - 9n ]
hope it helps..!!
Similar questions