Math, asked by jitender1708jk, 16 hours ago

56x^3y^2z^3 ÷ (-14xy^2z) please give the correct answer​ pls.​

Answers

Answered by shriaditrigaur
1

Answer:

(7x^4y^7z^6w^7)/18

Step-by-step explanation:

STEP

1

:

z

Simplify ——

12

Equation at the end of step

1

:

(z3) z

(((((((((((((14x•(y2))•————)•(w4))•(x2))•y)•z)•7)•w)•x)•y)•——)•w2)•y3)•z

21 12

STEP

2

:

z3

Simplify ——

21

Equation at the end of step

2

:

z3 z

(((((((((((((14x•(y2))•——)•w4)•x2)•y)•z)•7)•w)•x)•y)•——)•w2)•y3)•z

21 12

STEP

3

:

Equation at the end of step

3

:

z3 z

(((((((((((((2•7xy2)•——)•w4)•x2)•y)•z)•7)•w)•x)•y)•——)•w2)•y3)•z

21 12

STEP

4

:

Canceling Out:

4.1 Canceling out 7 as it appears on both sides of the fraction line

Equation at the end of step

4

:

2xy2z3 z

(((((((((((——————•w4)•x2)•y)•z)•7)•w)•x)•y)•——)•w2)•y3)•z

3 12

STEP

5

:

Equation at the end of step 5

2xy2z3w4 z

((((((((((————————•x2)•y)•z)•7)•w)•x)•y)•——)•w2)•y3)•z

3 12

STEP

6

:

Multiplying exponential expressions :

6.1 x1 multiplied by x2 = x(1 + 2) = x3

Equation at the end of step

6

:

2x3y2z3w4 z

(((((((((—————————•y)•z)•7)•w)•x)•y)•——)•w2)•y3)•z

3 12

STEP

7

:

Multiplying exponential expressions :

7.1 w5 multiplied by w2 = w(5 + 2) = w7

Equation at the end of step

7

:

7x4y4z5w7

(————————— • y3) • z

18

STEP

8

:

Multiplying exponential expressions :

8.1 y4 multiplied by y3 = y(4 + 3) = y7

Equation at the end of step

8

:

7x4y7z5w7

————————— • z

18

STEP

9

:

Multiplying exponential expressions :

9.1 z5 multiplied by z1 = z(5 + 1) = z6

Pls mark me brainlist pls

Answered by misscutiepie12
1

Answer:

are u Ar.ma.alian.s

Step-by-step explanation:

A systematic way of factorising an expression is the common factor method. It contains three steps.

Another section deals with a method called Factorising by regrouping terms. To practice questions based on this method, unsolved exercise 14.1 is given.

Now the question arises What is Regrouping?

Rearranging the expression allows us to form groups leading to factorisation. This is called regrouping.

Factorisation using identities and factors in the form of (x +a) (x+b) are explained.

Division of Algebraic Expressions: This section is divided into the following sub-sections:

a. Division of a monomial by another monomial

b. Division of a polynomial by a monomial

Similar questions