Math, asked by sakshamtambi0, 8 months ago

57. It cos
(C.B.S.E. 2000:1
58. If tan 8 + sin 0 = m, tan 0 - sin 0 = n, then show that m2 – n2 = 41mn.​

Answers

Answered by tanaya2207
3

Answer:

Tanθ+sinθ=m and tanθ-sinθ=n

∴, m²-n²

=(m+n)(m-n)

=(tanθ+sinθ+tanθ-sinθ)(tanθ+sinθ-tanθ+sinθ)

=(2tanθ)(2sinθ)

=4tanθsinθ

4√mn

=4√(tanθ+sinθ)(tanθ-sinθ)

=4√(tan²θ-sin²θ)

=4√{(sin²θ/cos²θ)-sin²θ}

=4√sin²θ{(1/cos²θ)-1}

=4sinθ√{(1-cos²θ)/cos²θ}

=4sinθ√(sin²θ/cos²θ)

=4sinθ√tan²θ

=4sinθtanθ

∴, LHS=RHS (Proved

Similar questions