English, asked by InshaHashmi2518, 1 year ago

58. If A is square matrix, then which of the following is not true ?
(A) AA’ is symmetric
(B) A- A’ is skew symmetric
(C) A+ A’ is symmetric
(D) A2 is symmetric

Answers

Answered by Rajputani44
0

Answer:

A is not true

may be it's right

Answered by lublana
2

Answer:

D.A^2 is symmetric

Explanation:

We are given that A is square matrix .

We have to find which is not true in give options.

Symmetric , If A'=A

Skew symmetric: If A'=-A

Suppose

A=\left[\begin{array}{ccc}1&1\\0&0\end{array}\right]

A'=\left[\begin{array}{ccc}1&0\\1&0\end{array}\right]

A.AA' is symmetric

AA'=\left[\begin{array}{ccc}1&1\\0&0\end{array}\right]\cdot\left[\begin{array}{ccc}1&0\\1&0\end{array}\right]

AA'=\left[\begin{array}{ccc}2&0\\0&0\end{array}\right]

(AA')'=\left[\begin{array}{ccc}2&0\\0&0\end{array}\right]

Hence, it is true.

B.A-A' is skew symmetric

A-A'=\left[\begin{array}{ccc}1&1\\0&0\end{array}\right]-\left[\begin{array}{ccc}1&0\\1&0\end{array}\right]

A-A'=\left[\begin{array}{ccc}0&1\\-1&0\end{array}\right]

(A-A')'=\left[\begin{array}{ccc}0&-1\\1&0\end{array}\right]

(A-A')'=-\left[\begin{array}{ccc}0&1\\-1&0\end{array}\right]

Hence, A-A' is skew symmetric .

C.A+A' is symmetric

A+A'=\left[\begin{array}{ccc}1&1\\0&0\end{array}\right]+\left[\begin{array}{ccc}1&0\\1&0\end{array}\right]

A+A'=\left[\begin{array}{ccc}2&1\\1&0\end{array}\right]

(A+A')'=\left[\begin{array}{ccc}2&1\\1&0\end{array}\right]

Hence, A+A' is symmetric .

D.A^2 is symmetric

A^2=A\cdot A=\left[\begin{array}{ccc}1&1\\0&0\end{array}\right]\cdot \left[\begin{array}{ccc}1&1\\0&0\end{array}\right]

A^2=\left[\begin{array}{ccc}1&1\\0&0\end{array}\right]

(A^2)'=\left[\begin{array}{ccc}1&0\\1&0\end{array}\right]\neq A

Hence, A^2 is not symmetric.

Answer:D.A^2 is symmetric

Similar questions