Math, asked by nabafnazir5, 10 months ago

58 If A1/A = B1/B = C1/C, ABC + BAC + C AB = 729
HAVA ====CC, 206 +386 +C# – 729.
Which of the following equals A1/A?​

Attachments:

Answers

Answered by amitnrw
5

A^{1/A} = 9^{1/ABC}

Step-by-step explanation:

Correction in Question

if A^{1/A} = B^{1/B} = C^{1/C}   ,  A^{BC} \times B^{AC} \times C^{AB} = 729

Let say

A^{1/A} = B^{1/B} = C^{1/C}  = k

Taking power ABC each side then

if A^{BC} = B^{AC} = C^{AB} =K^{ABC}

A^{BC} \times B^{AC} \times C^{AB} = 729\\k^{ABC} \times k^{ABC} \times k^{ABC} = 729\\( k^{ABC})^3 = 729\\( k^{ABC})^3 = 9^3\\ k^{ABC} = 9

k = 9^{1/ABC}\\A^{1/A} = 9^{1/ABC}

Hence

A^{1/A} = 9^{1/ABC}

Learn more:

(xa/xb)a+b×(xb/xc)b+c×(xc/xa)

https://brainly.in/question/3630688

Answered by tanveerkaur568913
6

Answer:

han g yad ho ase kase bhul jaungi

wase m ye app leave kar rhi hu

or koi app nhi use karungi m

Similar questions