59 vectors each of magnitude 12 N are acting at a
point simultaneously such that each vector makes an
angle 6° with the next vector. The resultant of these
vectors is
Answers
Let the first vector be,
Then second vector can be,
Likewise, the vector becomes,
Let us have vector too.
Resultant of our 59 vectors is,
We see that,
Then,
From (2),
Then (1) becomes,
From (2),
Hence 30th vector among them is the resultant.
Answer:
Let the first vector be,
\longrightarrow\vec{\sf{a_1}}=\sf{12(\cos6^o\,\hat i+\sin6^o\,\hat j)}⟶
a
1
=12(cos6
o
i
^
+sin6
o
j
^
)
Then second vector can be,
\longrightarrow\vec{\sf{a_2}}=\sf{12(\cos(6+6)^o\,\hat i+\sin(6+6)^o\,\hat j)}⟶
a
2
=12(cos(6+6)
o
i
^
+sin(6+6)
o
j
^
)
\longrightarrow\vec{\sf{a_2}}=\sf{12(\cos12^o\,\hat i+\sin12^o\,\hat j)}⟶
a
2
=12(cos12
o
i
^
+sin12
o
j
^
)
Likewise, the \sf{r^{th}}r
th
vector becomes,
\longrightarrow\vec{\sf{a_r}}=\sf{12(\cos(6r)^o\,\hat i+\sin(6r)^o\,\hat j)}⟶
a
r
=12(cos(6r)
o
i
^
+sin(6r)
o
j
^
)
Let us have \sf{60^{th}}60
th
vector too.
\longrightarrow\vec{\sf{a_{60}}}=\sf{12(\cos(6\times60)^o\,\hat i+\sin(6\times60)^o\,\hat j)}⟶
a
60
=12(cos(6×60)
o
i
^
+sin(6×60)
o
j
^
)
\longrightarrow\vec{\sf{a_{60}}}=\sf{12(\cos360^o\,\hat i+\sin360^o\,\hat j)}⟶
a
60
=12(cos360
o
i
^
+sin360
o
j
^
)
\longrightarrow\vec{\sf{a_{60}}}=\sf{12\,\hat i}⟶
a
60
=12
i
^
Resultant of our 59 vectors is,
\longrightarrow \vec{\sf{R}}=\mathsf{\displaystyle\sum_{r=1}^{59}}\vec{\sf{a_r}}⟶
R
=
r=1
∑
59
a
r
\longrightarrow\vec{\sf{R}}=(\displaystyle\mathsf{\sum_{r=1}^{60}}\vec{\sf{a_r}})-\vec{\sf{a_{60}}}\quad\quad\dots\sf{(1)}⟶
R
=(
r=1
∑
60
a
r
)−
a
60
…(1)
We see that,
\longrightarrow\vec{\sf{a}}_{\sf{30+r}}=\sf{12(\cos(6(30+r))^o\,\hat i+\sin(6(30+r))^o\,\hat j)}⟶
a
30+r
=12(cos(6(30+r))
o
i
^
+sin(6(30+r))
o
j
^
)
\longrightarrow\vec{\sf{a}}_{\sf{30+r}}=\sf{12(\cos(180+6r)^o\,\hat i+\sin(180+6r)^o\,\hat j)}⟶
a
30+r
=12(cos(180+6r)
o
i
^
+sin(180+6r)
o
j
^
)
\longrightarrow\vec{\sf{a}}_{\sf{30+r}}=\sf{12(-\cos(6r)^o\,\hat i-\sin(6r)^o\,\hat j)}⟶
a
30+r
=12(−cos(6r)
o
i
^
−sin(6r)
o
j
^
)
\longrightarrow\vec{\sf{a}}_{\sf{30+r}}=\sf{-12(\cos(6r)^o\,\hat i+\sin(6r)^o\,\hat j)}⟶
a
30+r
=−12(cos(6r)
o
i
^
+sin(6r)
o
j
^
)
\longrightarrow\vec{\sf{a}}_{\sf{30+r}}=-\vec{\sf{a_r}}\quad\quad\dots\sf{(2)}⟶
a
30+r
=−
a
r
…(2)
Then,
\displaystyle\longrightarrow\mathsf{\sum_{r=1}^{60}}\vec{\sf{a_r}}=\mathsf{\sum_{r=1}^{30}}\vec{\sf{a_r}}+\mathsf{\sum_{r=31}^{60}}\vec{\sf{a_r}}⟶
r=1
∑
60
a
r
=
r=1
∑
30
a
r
+
r=31
∑
60
a
r
\displaystyle\longrightarrow\mathsf{\sum_{r=1}^{60}}\vec{\sf{a_r}}=\mathsf{\sum_{r=1}^{30}}\vec{\sf{a_r}}+\mathsf{\sum_{r=1}^{30}}\vec{\sf{a}}_{\sf{30+r}}\quad\quad\!\!\sf{[\because\sum_{r=a}^bf(r)=\sum_{r=a-k}^{b-k}f(r+k)]}⟶
r=1
∑
60
a
r
=
r=1
∑
30
a
r
+
r=1
∑
30
a
30+r
[∵
r=a
∑
b
f(r)=
r=a−k
∑
b−k
f(r+k)]
From (2),
\displaystyle\longrightarrow\mathsf{\sum_{r=1}^{60}}\vec{\sf{a_r}}=\mathsf{\sum_{r=1}^{30}}\vec{\sf{a_r}}+\mathsf{\sum_{r=1}^{30}}-\vec{\sf{a_r}}⟶
r=1
∑
60
a
r
=
r=1
∑
30
a
r
+
r=1
∑
30
−
a
r
\displaystyle\longrightarrow\mathsf{\sum_{r=1}^{60}}\vec{\sf{a_r}}=\mathsf{\sum_{r=1}^{30}}\vec{\sf{a_r}}-\mathsf{\sum_{r=1}^{30}}\vec{\sf{a_r}}⟶
r=1
∑
60
a
r
=
r=1
∑
30
a
r
−
r=1
∑
30
a
r
\displaystyle\longrightarrow\mathsf{\sum_{r=1}^{60}}\vec{\sf{a_r}}=\vec{\sf{0}}⟶
r=1
∑
60
a
r
=
0
Then (1) becomes,
\longrightarrow\vec{\sf{R}}=\vec{\sf{0}}-\vec{\sf{a_{60}}}⟶
R
=
0
−
a
60
\longrightarrow\vec{\sf{R}}=-\vec{\sf{a_{60}}}⟶
R
=−
a
60
\longrightarrow\vec{\sf{R}}=-\vec{\sf{a}}_{\sf{30+30}}⟶
R
=−
a
30+30
From (2),
\longrightarrow\vec{\sf{R}}=-(-\vec{\sf{a_{30}}})⟶
R
=−(−
a
30
)
\longrightarrow\underline{\underline{\vec{\sf{R}}=\vec{\sf{a_{30}}}}}⟶
R
=
a
30
Hence 30th vector among them is the resultant.