Math, asked by brahmi060909, 7 hours ago

(5a + 4b)^2 - (3a-2b)^2

Answers

Answered by SULTHANASAJI
0

Answer:

(

5

+

4

)

2

1

(

3

2

)

2

(5a+4b)^{2}-1(3a-2b)^{2}

(5a+4b)2−1(3a−2b)2

Simplify

1

Expand the square

(

5

+

4

)

2

1

(

3

2

)

2

\left(5a+4b\right)^{2}-1(3a-2b)^{2}

(5a+4b)2−1(3a−2b)2

(

5

+

4

)

(

5

+

4

)

1

(

3

2

)

2

(5a+4b)(5a+4b)-1(3a-2b)^{2}

(5a+4b)(5a+4b)−1(3a−2b)2

2

Distribute

(

5

+

4

)

(

5

+

4

)

1

(

3

2

)

2

{\color{#c92786}{(5a+4b)(5a+4b)}}-1(3a-2b)^{2}

(5a+4b)(5a+4b)−1(3a−2b)2

5

(

5

+

4

)

+

4

(

5

+

4

)

1

(

3

2

)

2

{\color{#c92786}{5a(5a+4b)+4b(5a+4b)}}-1(3a-2b)^{2}

5a(5a+4b)+4b(5a+4b)−1(3a−2b)2

3

Distribute

5

(

5

+

4

)

+

4

(

5

+

4

)

1

(

3

2

)

2

{\color{#c92786}{5a(5a+4b)}}+4b(5a+4b)-1(3a-2b)^{2}

5a(5a+4b)+4b(5a+4b)−1(3a−2b)2

2

5

2

+

2

0

+

4

(

5

+

4

)

1

(

3

2

)

2

{\color{#c92786}{25a^{2}+20ab}}+4b(5a+4b)-1(3a-2b)^{2}

25a2+20ab+4b(5a+4b)−1(3a−2b)2

4

Distribute

2

5

2

+

2

0

+

4

(

5

+

4

)

1

(

3

2

)

2

25a^{2}+20ab+{\color{#c92786}{4b(5a+4b)}}-1(3a-2b)^{2}

25a2+20ab+4b(5a+4b)−1(3a−2b)2

2

5

2

+

2

0

+

2

0

+

1

6

2

1

(

3

2

)

2

25a^{2}+20ab+{\color{#c92786}{20ab+16b^{2}}}-1(3a-2b)^{2}

25a2+20ab+20ab+16b2−1(3a−2b)2

5

Combine like terms

2

5

2

+

2

0

+

2

0

+

1

6

2

1

(

3

2

)

2

25a^{2}+{\color{#c92786}{20ab}}+{\color{#c92786}{20ab}}+16b^{2}-1(3a-2b)^{2}

25a2+20ab+20ab+16b2−1(3a−2b)2

2

5

2

+

4

0

+

1

6

2

1

(

3

2

)

2

25a^{2}+{\color{#c92786}{40ab}}+16b^{2}-1(3a-2b)^{2}

25a2+40ab+16b2−1(3a−2b)2

6

Expand the square

2

5

2

+

4

0

+

1

6

2

1

(

3

2

)

2

25a^{2}+40ab+16b^{2}-1\left(3a-2b\right)^{2}

25a2+40ab+16b2−1(3a−2b)2

2

5

2

+

4

0

+

1

6

2

1

(

3

2

)

(

3

2

)

Answered by Choudharipawan123456
1

Answer:

=>16 a^{2}+52 a b+12 b^{2}

Step-by-step explanation:

Given expression -

(5a + 4b)^2 - (3a-2b)^2

We have to simplify the above expression,

By using the binomial theorem (p+q)^2=p^2+2pq+q^2 to expand (5a + 4b)^2.

=>$$25 a^{2}+40 a b+16 b^{2}-(3 a-2 b)^{2}$$

Use the binomial theorem $(p-q)^{2}=p^{2}-2 p q+q^{2}$ to expand (3 a-2 b)^{2}.

=>25a^{2}+40 a b+16 b^{2}-\left(9 a^{2}-12 a b+4 b^{2}\right)

To find the opposite of 9 a^{2}-12 a b+4 b^{2} find the opposite of each term.

=>25 a^{2}+40 a b+16 b^{2}-9 a^{2}+12 a b-4 b^{2}

Combine 25 a^{2} and -9 a^{2} to get 16 a^{2}.

=>16 a^{2}+40 a b+16 b^{2}+12 a b-4 b^{2}

Combine $40 a b$ and $12 a b$ to get $52 a b$.

=>16 a^{2}+52 a b+16 b^{2}-4 b^{2}

Combine 16 b^{2} and -4 b^{2} to get 12 b^{2}.  

=>16 a^{2}+52 a b+12 b^{2}

Hence, the required solution is 16 a^{2}+52 a b+12 b^{2}.

Similar questions