(5a + 4b)^2 - (3a-2b)^2
Answers
Answer:
(
5
+
4
)
2
−
1
(
3
−
2
)
2
(5a+4b)^{2}-1(3a-2b)^{2}
(5a+4b)2−1(3a−2b)2
Simplify
1
Expand the square
(
5
+
4
)
2
−
1
(
3
−
2
)
2
\left(5a+4b\right)^{2}-1(3a-2b)^{2}
(5a+4b)2−1(3a−2b)2
(
5
+
4
)
(
5
+
4
)
−
1
(
3
−
2
)
2
(5a+4b)(5a+4b)-1(3a-2b)^{2}
(5a+4b)(5a+4b)−1(3a−2b)2
2
Distribute
(
5
+
4
)
(
5
+
4
)
−
1
(
3
−
2
)
2
{\color{#c92786}{(5a+4b)(5a+4b)}}-1(3a-2b)^{2}
(5a+4b)(5a+4b)−1(3a−2b)2
5
(
5
+
4
)
+
4
(
5
+
4
)
−
1
(
3
−
2
)
2
{\color{#c92786}{5a(5a+4b)+4b(5a+4b)}}-1(3a-2b)^{2}
5a(5a+4b)+4b(5a+4b)−1(3a−2b)2
3
Distribute
5
(
5
+
4
)
+
4
(
5
+
4
)
−
1
(
3
−
2
)
2
{\color{#c92786}{5a(5a+4b)}}+4b(5a+4b)-1(3a-2b)^{2}
5a(5a+4b)+4b(5a+4b)−1(3a−2b)2
2
5
2
+
2
0
+
4
(
5
+
4
)
−
1
(
3
−
2
)
2
{\color{#c92786}{25a^{2}+20ab}}+4b(5a+4b)-1(3a-2b)^{2}
25a2+20ab+4b(5a+4b)−1(3a−2b)2
4
Distribute
2
5
2
+
2
0
+
4
(
5
+
4
)
−
1
(
3
−
2
)
2
25a^{2}+20ab+{\color{#c92786}{4b(5a+4b)}}-1(3a-2b)^{2}
25a2+20ab+4b(5a+4b)−1(3a−2b)2
2
5
2
+
2
0
+
2
0
+
1
6
2
−
1
(
3
−
2
)
2
25a^{2}+20ab+{\color{#c92786}{20ab+16b^{2}}}-1(3a-2b)^{2}
25a2+20ab+20ab+16b2−1(3a−2b)2
5
Combine like terms
2
5
2
+
2
0
+
2
0
+
1
6
2
−
1
(
3
−
2
)
2
25a^{2}+{\color{#c92786}{20ab}}+{\color{#c92786}{20ab}}+16b^{2}-1(3a-2b)^{2}
25a2+20ab+20ab+16b2−1(3a−2b)2
2
5
2
+
4
0
+
1
6
2
−
1
(
3
−
2
)
2
25a^{2}+{\color{#c92786}{40ab}}+16b^{2}-1(3a-2b)^{2}
25a2+40ab+16b2−1(3a−2b)2
6
Expand the square
2
5
2
+
4
0
+
1
6
2
−
1
(
3
−
2
)
2
25a^{2}+40ab+16b^{2}-1\left(3a-2b\right)^{2}
25a2+40ab+16b2−1(3a−2b)2
2
5
2
+
4
0
+
1
6
2
−
1
(
3
−
2
)
(
3
−
2
)
Answer:
Step-by-step explanation:
Given expression -
We have to simplify the above expression,
By using the binomial theorem to expand
Use the binomial theorem to expand
To find the opposite of find the opposite of each term.
Combine and to get
Combine and to get .
Combine and to get .
Hence, the required solution is