Math, asked by swastikmitra, 9 months ago

(5a+b)²+(5a+b)(a+2b)-20(a+2b)²​

Answers

Answered by Anonymous
11

» Question :

\sf{(5a + b)^{2} + (5a + b)(a + 2b) - 20(a + 2b)^{2}}

\\

» To Find :

The factorisation of the Equation.

\\

» We Know :

  • \sf{(a + b)^{2} = a^{2} + 2ab + b^{2}}

\\

» Solution :

\purple{\sf{(5a + b)^{2} + (5a + b)(a + 2b) - 20(a + 2b)^{2}}}

Using the identity ,

\implies \sf{(a + b)^{2} = a^{2} + 2ab + b^{2}}

\\

\implies \sf{(5a)^{2} + 2 \times 5a \times b + (b)^{2} + (5a + b)(a + 2b) - 20(a + 2b)^{2}}

\\

\implies \sf{25a^{2} + 10ab + b^{2} + (5a + b)(a + 2b) - 20(a + 2b)^{2}}

\\

\implies \sf{25a^{2} + 10ab + b^{2} + 5a(a + 2b) + b(a + 2b) - 20(a + 2b)^{2}}

\\

\implies \sf{25a^{2} + 10ab + b^{2} + 5a^{2} + 10ab + ab + 2b^{2} - 20(a + 2b)^{2}}

\\

\implies \sf{25a^{2} + 10ab + b^{2} + 5a^{2} + 10ab + ab + 2b^{2} - 20\left((a)^{2} + 2 \times a \times 2b + (2b)^{2}\right)}

\\

\implies \sf{25a^{2} + 10ab + b^{2} + 5a^{2} + 10ab + ab + 2b^{2} - 20\left(a^{2} + 4ab + 4b^{2}\right)}

\\

\implies \sf{25a^{2} + 10ab + b^{2} + 5a^{2} + 10ab + ab + 2b^{2} - 20\left(a^{2} + 4ab + 4b^{2}\right)}

\\

\implies \sf{25a^{2} + 10ab + b^{2} + 5a^{2} + 10ab + ab + 2b^{2} - \left(20 \times a^{2} + 20 \times 4ab + 20 \times 4b^{2}\right)}

\\

\implies \sf{25a^{2} + 10ab + b^{2} + 5a^{2} + 10ab + ab + 2b^{2} - \left(20a^{2} + 80ab + 80b^{2}\right)}

\\

\implies \sf{25a^{2} + 10ab + b^{2} + 5a^{2} + 10ab + ab + 2b^{2} - 20a^{2} - 80ab - 80b^{2}}

\\

\implies \sf{\big(25a^{2} + 5a^{2} + (-20a^{2})\big) + \big(10ab + 10ab + ab + (-80ab)\big) + \big(b^{2} + 2b^{2} + (-80b^{2})\big)}

\\

\implies \sf{\big(30a^{2} - 20a^{2})\big) + \big(21ab - 80ab)\big) + \big(3b^{2} - 80b^{2}\big)}

\\

\sf{\implies 10a^{2} - 59ab - 77b^{2}}

\\

\therefore \purple{\sf{10a^{2} - 59ab - 77b^{2}}}


Vamprixussa: Splendid!
Answered by Anonymous
2

see ur full answer in attachment mate

Attachments:
Similar questions