Math, asked by aniket30092005, 4 months ago

5a²+2b. solve withe the formula of (a+b)²​

Answers

Answered by michaelgimmy
12

Question :-

Solve using the Formula \bf (a + b)^2 = a^2 + 2ab + b^2

(i) (5a + 2b)^2

Solution :-

We have :

\begin {aligned} (5a + 2b)^2 & = (5a)^2 + 2 \times 5a \times 2b + (2b)^2\\\\& = 25a^2 + 20ab + 4b^2\\\\\therefore\: \bold {(5a + 2b)^2} & = \bf 25a^2 + 20ab + 4b^2 \end {aligned}

Additional Information :-

Some more Formulae for Factorization:

\boxed {\begin {minipage}{6.5 cm} (1) (a - b)^2 = (a^2 - 2ab + b^2)\\\\(2) (a^2 - b^2) = (a + b)(a - b)\\\\(3) (x + a)(x + b) = x^2 + (a + b) \times x + ab \end {minipage}}

Answered by Cokkie
44

Question

5a^2 +2b

Answer

GIVEN :-

  • 5a^2+2b

TO FIND :-

  • the value of the identity by the formula(a+b)^2

Solution :-

 \rightarrow \sf \gray{(5a + b) ^{2} }

 \rightarrow \sf{ \gray{(5a) ^{2}  + 2(5a)(2b) + 2b ^{2} }}

 \rightarrow { \sf \gray{25 {a}^{2}  + 20ab + 4 {b}^{2} }}

  • Hence, the value of (5a+b)^2 = 25a^2+20ab+4b^2 .

More to know ;

  • IDENTITY I :-
  •  \sf(x + y) ^{2}  =  {x}^{2}  +  {y}^{2}  + 2xy
  • IDENTITY ii :-
  •  \sf(x - y )^{2}  =  {x}^{2}   +  {y}^{2}  - 2xy
  • IDENTITY III :-
  •  \sf {x}^{2}  -  {y}^{2}  = (x + y)(x - y)
  • IDENTITY IV :-
  •  \sf(x + a)(x + b) =  {x}^{2}  + (a + b)x + ab

Similar questions