Math, asked by sunilsimghal456, 7 months ago

(5ab^2+ab+b^2)*(2ba^2-ab+5)​

Answers

Answered by camsyy
0

Answer:

(2a2b + 1) • (2a2b - 1)

 ———————————————————————

           2ab          

Step-by-step explanation:

STEP

1

:

Equation at the end of step 1

                         b    

 (((2•(a2))•b)•a)-(5•————————)

                     (2•5ab2)

STEP

2

:

               b    

Simplify   ————————

           (2•5ab2)

Dividing exponential expressions :

2.1    b1 divided by b2 = b(1 - 2) = b(-1) = 1/b1 = 1/b

Equation at the end of step

2

:

                       1  

 (((2•(a2))•b)•a)-(5•————)

                     10ab

STEP  

3

:

Equation at the end of step

3

:

                     1  

 ((2a2 • b) • a) -  ———

                    2ab

STEP  

4

:

Rewriting the whole as an Equivalent Fraction :

4.1   Subtracting a fraction from a whole

Rewrite the whole as a fraction using  2ab  as the denominator :

            2a3b     2a3b • 2ab

    2a3b =  ————  =  ——————————

             1          2ab    

Equivalent fraction : The fraction thus generated looks different but has the same value as the whole

Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator

Adding fractions that have a common denominator :

4.2       Adding up the two equivalent fractions

Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

2a3b • 2ab - (1)     4a4b2 - 1

————————————————  =  —————————

      2ab               2ab    

Trying to factor as a Difference of Squares:

4.3      Factoring:  4a4b2 - 1  

Theory : A difference of two perfect squares,  A2 - B2  can be factored into  (A+B) • (A-B)

Proof :  (A+B) • (A-B) =

        A2 - AB + BA - B2 =

        A2 - AB + AB - B2 =

        A2 - B2

Note :  AB = BA is the commutative property of multiplication.

Note :  - AB + AB equals zero and is therefore eliminated from the expression.

Check :  4  is the square of  2  

Check : 1 is the square of 1

Check :  a4  is the square of  a2  

Check :  b2  is the square of  b1  

Factorization is :       (2a2b + 1)  •  (2a2b - 1)  

Trying to factor as a Difference of Squares:

4.4      Factoring:  2a2b - 1  

Check :  2  is not a square !!

Ruling : Binomial can not be factored as the

difference of two perfect squares

Similar questions