Math, asked by ksquare2000, 11 months ago

5cos A=4 find tanA and cosecA

Answers

Answered by Trisha3010
5

Answer:

 5\cos(a)  = 4 \\  \cos(a)  =  \frac{4}{5}  \\ then \\  \sin(a)  =  \sqrt{1 -  {  { \cos }^{2} a} }  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  \sqrt{1 -  \frac{16}{25} }  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  \sqrt{ \frac{25 - 16}{25} }  =  \sqrt{ \frac{9}{25} }   =  \frac{3}{5}

 \tan(a)  =  \frac{ \sin(a) }{ \cos(a) }  =  \frac{3 \div 5}{4 \div 5}  =  \frac{3}{4}  \\ and \:  \:  \:  \\  \cosec(a)  =  \frac{1}{ \sin(a) }  =  \frac{1}{\frac{3}{5} }  =  \frac{5}{3}

hope this will help u....

Answered by Aloi99
5

Given:–

CosA= \frac{4}{5}

To find:–

TanA and Cosec A

\rule{200}{1}

\pink{\boxed{\blue{\underline{\green{\mathrm{Proof:-}}}}}}

CosA= \frac{Adjacent side}{Hypotenuse}

TanA= \frac{SinA}{CosA} => \frac{3}{4}

CosecA= \frac{Hypotenuse}{Opposite side} => \frac{5}{3}

★Refer Attachment For further Details★

\rule{200}{1}

Attachments:
Similar questions