Math, asked by partharoy042005, 2 months ago

5cos theta+ 12 sin theta = 13 find tan theta?

Answers

Answered by assingh
84

Topic :-

Trigonometry

Given :-

\sf{5\cos\theta+12\sin\theta=13}

To Find :-

\sf{\tan\theta=?}

Solution :-

\sf{\implies5\cos\theta+12\sin\theta=13}

Divide whole equation with cosθ,

\sf{\implies 5\cdot\dfrac{\cos\theta}{\cos\theta}+12\cdot\dfrac{\sin\theta}{\cos\theta}=\dfrac{13}{\cos\theta}}

\sf{\implies 5+12\tan\theta=13\sec\theta}

Squaring both sides,

\sf{\implies (5+12\tan\theta)^2=(13\sec\theta)^2}

\sf{\implies 25+2(5)(12\tan\theta)+144\tan^2\theta=169\sec^2\theta}

\sf{(\because (a+b)^2=a^2+2ab+b^2)}

\sf{\implies 25+120\tan\theta+144\tan^2\theta=169\sec^2\theta}

\sf{\implies 25+120\tan\theta+144\tan^2\theta=169(1+\tan^2\theta)}

(\because \sec^2\theta=1+\tan^2\theta)

\sf{\implies 25+120\tan\theta+144\tan^2\theta=169+169\tan^2\theta}

\sf{\implies 0=169\tan^2\theta-144\tan^2\theta-120\tan\theta+169-25}

\sf{\implies 25\tan^2\theta-120\tan\theta+144=0}

Splitting middle term and factorising it,

\sf{\implies 25\tan^2\theta-60\tan\theta-60\tan\theta+144=0}

\sf{\implies 5\tan\theta(5\tan\theta-12)-12(5\tan\theta-12)=0}

\sf{\implies (5\tan\theta-12)(5\tan\theta-12)=0}

\sf{\implies (5\tan\theta-12)^2=0}

Taking square root both sides,

\sf{\implies 5\tan\theta-12=0}

\sf{\implies 5\tan\theta=12}

\sf{\implies \tan\theta=\dfrac{12}{5}}

Answer :-

\underline{\boxed{\sf{\tan\theta=\dfrac{12}{5}}}}

Additional Formulae :-

\sf{sin^2\theta+\cos^2\theta=1}

\sf{1+\cot^2\theta=\csc^2\theta}

\sf{\sin 2\theta=2\sin\theta\cos\theta}

\sf{\cos2\theta=\cos^2\theta-\sin^2\theta}

\sf{\sin3\theta=3\sin\theta-4\sin^3\theta}

\sf{\cos3\theta=4\cos^3\theta-3\cos\theta}


Asterinn: Perfect!
Similar questions