5cos² 60⁰ + 4cos² 30⁰ - tan² 45⁰/sin² 30⁰ + cos ² 60²
Answers
Answer:
We have to evaluate the given expression \frac{5cos^{2}60+4cos^{2}30-tan^{2}45}{sin^{2}30+cos^{2}60 }
We know the value of cos 60° = \frac{1}{2}
sin30° = \frac{1}{2}
tan45° = 1
cos30° = \frac{\sqrt{3}}{2}
By lacing the values in the given expression
= \frac{5(\frac{1}{2})^{2} +4(\frac{\sqrt{3}}{2})^{2}-1}{(\frac{1}{2}^{2})+(\frac{1}{2})^{2}}
= \frac{\frac{5}{4}+3-1}{\frac{1}{4}+\frac{1}{4}}
= \frac{\frac{13}{4}}{\frac{1}{2}}
= \frac{13}{4}\times \frac{2}{1}
= \frac{13}{2}
= 6.5
Answer:
Step-by-step explanation:
5cos² 60⁰ + 4cos² 30⁰ - tan² 45⁰/sin² 30⁰ + cos ² 60²
4cos² 60⁰ + cos ² 60² + 4cos² 30⁰ - tan² 45⁰/sin² 30⁰ + cos ² 3600
4cos² 60⁰ + 4cos² 30⁰ - tan² 45⁰/sin² 30⁰ + cos ² 3600 + cos ² 60°
4cos² 60⁰ + 4sin² 60⁰ - tan² 45⁰/sin² 30⁰ + cos ² 3600 + cos ² 60
4(cos² 60⁰+sin² 60⁰) - 1/sin² 30⁰ + 1 +cos ² 60 (cos ² 3600=1)
4-1/sin² 30⁰ + 1 +cos ² 60 (cos² 60⁰+sin² 60⁰=1)
4- 1/sin² 30⁰ +1+ sin ²30 (tan45°=1)
4-1/(0.5)²+1+ (0.5)² (sin30°=0.5)
4-4+1+(0.25)
1.25