Math, asked by yaswanth202015, 2 months ago

(5d-6)² using suitable identities ​

Answers

Answered by diasneanna08
0

Answer:

25d²-60d+36 is ur answer

Step-by-step explanation:

using (a-b)²=a²-2ab+b²

Answered by MrImpeccable
21

{\huge{\underline{\boxed{\red{\mathcal{Answer}}}}}}

To Solve:

  • (5d-6)²

Solution:

 :\longrightarrow (5d - 6)^2 \\:\implies (5d)^2 - 2(5d)(6) + (6)^2 \\\bf{:\implies 25d^2 + 36 - 60d}

Formula Used:

  • a-b)^2 = a^2 - 2ab + b^2

Learn More:

\boxed{\begin{minipage}{7 cm}\boxed{\bigstar\:\:\textbf{\textsf{Algebric\:Identity}}\:\bigstar}\\\\1)\bf\:(A+B)^{2} = A^{2} + 2AB + B^{2}\\\\2)\bf\: (A-B)^{2} = A^{2} - 2AB + B^{2}\\\\3)\bf\: A^{2} - B^{2} = (A+B)(A-B)\\\\4)\bf\: (A+B)^{2} = (A-B)^{2} + 4AB\\\\5)\bf\: (A-B)^{2} = (A+B)^{2} - 4AB\\\\6)\bf\: (A+B)^{3} = A^{3} + 3AB(A+B) + B^{3}\\\\7)\bf\:(A-B)^{3} = A^{3} - 3AB(A-B) - B^{3}\\\\8)\bf\: A^{3} + B^{3} = (A+B)(A^{2} - AB + B^{2})\\\\9)\bf\: A^{3} - B^{3} = (A-B)(A^{2} + AB + B^{2})\\\\ \end{minipage}}

Similar questions