Math, asked by mehrin18, 1 year ago

(5k+1)whole square leaves remainder ...... on dividing by 5​

Answers

Answered by MaheswariS
4

\textbf{Given:}

\mathsf{(5k+1)^2}

\textbf{To find:}

\textsf{The remainder when}

\mathsf{(5k+1)^2\;is\;divided\;by\;5}

\textbf{Solution:}

\textsf{Consider,}

\mathsf{(5k+1)^2}

\textsf{Using the identity,}

\boxed{\mathsf{(a+b)^2=a^2+b^2+2\,ab}}

\mathsf{=(5k)^2+1^2+2(5k)(1)}

\mathsf{=25k^2+1+10k}

\mathsf{=25k^2+10k+1}

\mathsf{=5(5k^2+2k)+1}

\mathsf{=Multiple\;of\;5+1}

\therefore\underline{\mathsf{The\;remainder\;when\;(5k+1)^2\;is\;divided\;by\;5\;is\;1}}

\textbf{Find more:}

The remainder when 31^150 is divided by 1024 is. (a)320

(b)704

(c)703

(d)321​

https://brainly.in/question/18302009

Answered by JackelineCasarez
2

1 would be the remainder left on dividing (5k + 1)^2 by 5.

Step-by-step explanation:

Given that,

(5k + 1)^2/5                   (where k = any integer like 1, 2, -1, -2, etc.)

Let k be 1 and by putting k = 1

(5 * 1 + 1)^2/5

= (6 * 6)/5

= 36/5

Remainder = 1

Let k be 2 and by putting k = 2

(5 * 2 + 1)^2/5

= (11 * 11)/5

= 121/5

Remainder = 1

Thus, the remainder would be 1.

Learn more: Algebra

brainly.in/question/6026380

Similar questions