(5m-6n)² +(5m+6n)² use identity
Answers
50m² + 62n²
_________________________
first solve (5m-6n)² by using identity,
__________________________
now solve (5m+6n)² by using identity;
_________________________
we have to find value of (5m-6n)²+ (5m+6n)²
→ (5m-6n)² + (5m+6n)²
now put the value of (5m-6n)² and (5m+6n)² from (i) and (ii)
→ (25m² + 36n² - 60mn) + (25m² + 36n² + 60mn)
→ 25m² + 36n² - 60mn + 25m² + 36n² + 60mn
→ 25m² + 25m² + 36n² + 36n²
→ 50m² + 72n²
_________________________
so answer is 50m² + 72n²
_______________________
→ (a + b)² = a² + b² + 2ab
→ (a - b)² = a² + b² - 2ab
→ a² - b² = (a - b)(a + b)
→ (a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca
→ (x + a)(x + b) = x² + (a + b)x + ab
→ (a + b)³ = a³ + b³ + 3ab(a+b)
→ (a - b)³ = a³- b³ - 3ab (a - b)
Answer:
50m² + 62n²
Step-by-step explanation:
(5m−6n)^2 +(5m+6n)^2
_________________________
first solve (5m-6n)² by using identity,
(a−b)^2 =a^2 +b^2 −2ab
(5m−6n)^2
⟹(5m)^2 +(6n) ^2 −2×5m×6n
⟹25m^2 +36n^2 −60mn.........(i)
__________________________
now solve (5m+6n)² by using identity;
(a+b)^2 =a^2+b^2+2ab
(5m+6n)^2
⟹(5m)^2 +(6n)^2 +2×5m×6n
⟹25m^2+36n^2 +60mn..........(ii)
_________________________
we have to find value of (5m-6n)²+ (5m+6n)²
→ (5m-6n)² + (5m+6n)²
now put the value of (5m-6n)² and (5m+6n)² from (i) and (ii)
→ (25m² + 36n² - 60mn) + (25m² + 36n² + 60mn)
→ 25m² + 36n² - 60mn + 25m² + 36n² + 60mn
→ 25m² + 25m² + 36n² + 36n²
→ 50m² + 72n²
_________________________
so answer is 50m² + 72n²
_______________________
\bold{ \underline{ \underline \orange{for \: more \: information}}}→
formoreinformation
→
→ (a + b)² = a² + b² + 2ab
→ (a - b)² = a² + b² - 2ab
→ a² - b² = (a - b)(a + b)
→ (a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca
→ (x + a)(x + b) = x² + (a + b)x + ab
→ (a + b)³ = a³ + b³ + 3ab(a+b)
→ (a - b)³ = a³- b³ - 3ab (a - b)