5n²+75n-1620=0
Factorisation.
Answers
Answered by
0
Answer:
my dear friend your answer is t
Step-by-step explanation:
Common factor
5
2
+
7
5
−
1
6
2
0
=
0
5n^{2}+75n-1620=0
5n2+75n−1620=0
5
(
2
+
1
5
−
3
2
4
)
=
0
5(n^{2}+15n-324)=0
5(n2+15n−324)=0
2
Divide both sides of the equation by the same term
5
(
2
+
1
5
−
3
2
4
)
=
0
5(n^{2}+15n-324)=0
5(n2+15n−324)=0
2
+
1
5
−
3
2
4
=
0
n^{2}+15n-324=0
n2+15n−324=0
3
Use the quadratic formula
=
−
±
2
−
4
√
2
n=\frac{-{\color{#e8710a}{b}} \pm \sqrt{{\color{#e8710a}{b}}^{2}-4{\color{#c92786}{a}}{\color{#129eaf}{c}}}}{2{\color{#c92786}{a}}}
n=2a−b±b2−4ac
Once in standard form, identify a, b and c from the original equation and plug them into the quadratic formula.
2
+
1
5
−
3
2
4
=
0
n^{2}+15n-324=0
n2+15n−324=0
=
1
a={\color{#c92786}{1}}
a=1
=
1
5
Similar questions
Math,
13 hours ago
History,
13 hours ago
English,
13 hours ago
Computer Science,
1 day ago
English,
8 months ago