Math, asked by panikb6023, 10 months ago

5p+q=2 6p-3q=1 slove this by substitution method, elimination method, cross-multiplication method

Answers

Answered by ButterFliee
7

\huge\underline\mathrm{GIVEN:-}

  • 5p+q=2
  • 6p-3q=1

\huge\underline\mathrm{TO\:FIND:-}

Find the value of p and q by Substitution, Elimination & Cross-Multiplication method ?

\huge\underline\mathrm{SOLUTION:-}

\normalsize{\boxed{\underline{\underline{\bf{\red{SUBSTITUTION\: METHOD:-}}}}}}

We have :-

5p+q=2 ....1)

6p-3q=1....2)

Taking equation 1)

 \sf {\mapsto q = 2-5p}

On putting the value of q in equation 2), we get

 \sf {\mapsto 6p - 3(2-5p) = 1}

 \sf {\mapsto 6p - 6 + 15p = 1}

 \sf {\mapsto 21p = 1+6}

 \sf {\mapsto 21p = 7}

 \sf {\mapsto p = \cancel\dfrac{7}{21}}

 \large\sf\red {\longmapsto \:  \star \: p = \frac{1}{3}\: \star}

Put the value of p in equation 1)

 \sf {\mapsto 5\times \frac{1}{3} + q = 2}

 \sf {\mapsto \frac{5}{3} + q = 2}

 \sf {\mapsto \frac{5 + 3q}{3} = 2}

 \sf {\mapsto 5 + 3q = 3\times 2}

 \sf{ \mapsto 3q = 6-5}

 \large\sf \red{\mapsto \: \star \:q = \frac{1}{3}\: \star}

______________

\normalsize{\boxed{\underline{\underline{\bf{\red{ELIMINATION\: METHOD:-}}}}}}

To Eliminate both the equations, the coefficients of both the equations should be equal

\sf{5p + q = 2}(Multiplying by 3)

\sf{15p + 3q = 6}

Taking equation 1) & 2), we get

\large\sf{15p + \cancel{3q} = 6}

\large\underline\mathsf{6p   - \cancel{3q}= 1}

\sf{21p \:\:= \:\:7}

 \sf {\mapsto p = \cancel\dfrac{7}{21}}

 \large\sf\red {\mapsto \: \star \:p = \frac{1}{3}\star}

Put the value of p in equation 1)

 \sf {\mapsto 5\times \frac{1}{3} + q = 2}

 \sf {\mapsto \frac{5}{3} + q = 2}

 \sf {\mapsto \frac{5 + 3q}{3} = 2}

 \sf {\mapsto 5 + 3q = 3\times 2}

 \sf{\mapsto 3q = 6-5\: }

 \large\sf \red{\mapsto \: \star \:q = \frac{1}{3}\: \star}

_______________

\normalsize{\boxed{\underline{\underline{\bf{\red{CROSS-MULTIPLICATION\:METHOD:-}}}}}}

\sf{p_1 = 5 }⠀⠀\sf{ q_1 = 1}\sf{1 = -2}

\sf{p_2 = 6}\sf{q_2 = -3}\sf{1 = -1}

p⠀⠀⠀⠀q⠀⠀⠀⠀1

5⠀⠀⠀⠀1⠀⠀⠀⠀–2

6⠀⠀⠀⠀-3⠀⠀⠀ –1

✪  For (p) cross -multiplying between q and 1 ✪ 

✪  For (q) cross-multiplying between p and 1 ✪ 

✪  For (1) cross-multiplying between p and q ✪ 

\large\sf{\frac{p}{-1-6}}\large\sf{\frac{q}{-5-(-12)}}\large\sf{\frac{1}{-15-6}}

\large\sf{\frac{p}{-7}}⠀⠀⠀\large\sf{\frac{-q}{7}}⠀⠀⠀\large\sf{\frac{1}{-21}}

Taking p and 1

\large\sf{\frac{p}{-7} =\frac{1}{-21}}

\sf{p = \cancel\dfrac{-7}{-21}}

\sf\red{\longmapsto\:\star \:p = \frac{1}{3}\star}

Thus, the value of p is \bf{\frac{1}{3}}

Taking q and 1

\sf{\frac{q}{-7} =\frac{1}{-21}}

\sf{q = \cancel\dfrac{-7}{-21}}

\sf\red{ \longmapsto\:\star\:q = \frac{1}{3}\:\star}

Thus, the value of q is \bf{\frac{1}{3}}

______________

\large\underline\mathrm{FINAL\: ANSWER:-}

\Large{\boxed{\boxed{\bf{\red{P = \frac{1}{3}}}}}}

\Large{\boxed{\boxed{\bf{\red{q = \frac{1}{3}}}}}}

Similar questions