Math, asked by singhpriyavrat00, 9 months ago

5sinθ =3 then the value of (secθ +tanθ )/(secθ -tanθ )

Answers

Answered by shivcharangarg38028
1

Step-by-step explanation:

Now, sin a = 3/5

cos a = √1-sin²a = √1-9/25 = √(25-9)/25

= √16/25 = 4/5

So, sec a = 5/4

and, tan a = 3/5 × 5/4 = 3/4

As,

 \frac{ \sec(a) +  \tan(a)  }{ \sec(a) -  \tan(a)  }

=  \frac{( \sec(a )  +  \tan(a) )( \sec(a)  +  \tan(a) ) }{( \sec(a -  \tan(a) )( \sec(a)   +  \tan(a)) }

 =  {( \sec(a) +  \tan(a))  }^{2}  \div(  { \sec }^{2} a -  { \tan }^{2}a)

= (sec a + tan a)² { as, sec²a - tan²a = 1}

 {( \frac{5}{4} +  \frac{3}{4} ) }^{2} =  {( \frac{8}{4}  )}^{2}  =  {2}^{2}  = 4

Similar questions