Math, asked by 9910924730jha, 1 year ago

[5sin²30°+cos²45°+4tan²60°] /(2sin30°cos60°+tan45°)

Answers

Answered by Chouhanjyoti
5

Answer:

Step-by-step explanation:

Attachments:
Answered by pinquancaro
11

\dfrac{5\sin^2 30^\circ+\cos^2 45^\circ+4\tan^2 60^\circ}{2\sin 30^\circ\cos 60^\circ+\tan 45^\circ}=\dfrac{55}{6}

Step-by-step explanation:

Given : Expression \dfrac{5\sin^2 30^\circ+\cos^2 45^\circ+4\tan^2 60^\circ}{2\sin 30^\circ\cos 60^\circ+\tan 45^\circ}

To find : Simplify the expression ?

Solution :

\dfrac{5\sin^2 30^\circ+\cos^2 45^\circ+4\tan^2 60^\circ}{2\sin 30^\circ\cos 60^\circ+\tan 45^\circ}

Using trigonometric values,

\sin 30^\circ=\frac{1}{2}

\cos 45^\circ=\frac{1}{\sqrt2}

\cos 60^\circ=\frac{1}{2}

\tan 45^\circ=1

\tan 60^\circ=\sqrt{3}

Substitute the values,

=\dfrac{5(\frac{1}{2})^2+(\frac{1}{\sqrt2})^2+4(\sqrt{3})^2}{2(\frac{1}{2})(\frac{1}{2})+1}

=\dfrac{\frac{5}{4}+\frac{1}{2}+12}{\frac{1}{2}+1}

=\dfrac{\frac{5+2+48}{4}}{\frac{1+2}{2}}

=\dfrac{\frac{55}{4}}{\frac{3}{2}}

=\dfrac{55}{6}

Therefore, \dfrac{5\sin^2 30^\circ+\cos^2 45^\circ+4\tan^2 60^\circ}{2\sin 30^\circ\cos 60^\circ+\tan 45^\circ}=\dfrac{55}{6}

#Learn more

Tan 45/cosec 30+sec 60/cot 45 - 5sin 90/ 2 cos 0​

https://brainly.in/question/13276208

Similar questions