Math, asked by 9837399393, 11 hours ago

5sin30°+cos²45°-4tan²30°/2sin30°×cos30°+tan45°




please no spam​

Answers

Answered by Anonymous
31

STEP-BY-STEP EXPLANATION:

.

 \longrightarrow \frac{5 \sin {30}^{ \circ} +  { \cos}^{2}  {45}^{ \circ}    - 4 { \tan}^{2}  {30}^{ \circ} }{2 \sin {30}^{ \circ}. \cos {30}^{ \circ}  +  \tan {45}^{ \circ}  }   \\

 \sf As \:  we \:  know  \: that, \begin{cases} \sin {30}^{ \circ}  =  \frac{1}{ \sqrt{2} }  \\ \\  \cos {30}^{ \circ} =  \frac{ \sqrt{3} }{2}   \\   \\  \cos {45}^{ \circ}  =  \frac{1}{ \sqrt{2} }  \\  \\  \tan {30}^{ \circ}  =  \frac{1}{ \sqrt{3} }  \\  \\  \tan {45}^{ \circ}  = 1 \end{cases} \\

 \longrightarrow \frac{5 \sin {30}^{ \circ} +  { \cos}^{2}  {45}^{ \circ}    - 4 { \tan}^{2}  {30}^{ \circ} }{2 \sin {30}^{ \circ}. \cos {30}^{ \circ}  +  \tan {45}^{ \circ}  }   \\

 \longrightarrow \frac{5 ( \frac{1}{ \sqrt{2} } ) +  { ( \frac{1}{ \sqrt{2} }) }^{2}    - 4 {(  \frac{1}{ \sqrt{3} } )}^{2}  }{2 ( \frac{1}{ \sqrt{2} })  \times  \frac{ \sqrt{3} }{2}   +  1  }   \\

 \longrightarrow \frac{ \frac{5}{ \sqrt{2} }  +   \frac{1}{ {2} }   - 4   (\frac{1}{ {3} } )  }{ \frac{2}{ \sqrt{2} } \times  \frac{ \sqrt{3} }{2}   +  1  }   \\

 \longrightarrow \frac{ \frac{5}{ \sqrt{2} }  \times  \frac{ \sqrt{2} }{ \sqrt{2} }  +   \frac{1}{ {2} }   - 4   (\frac{1}{ {3} } )  }{ \frac{ \cancel{2}}{ \sqrt{2} } \times  \frac{ \sqrt{3} }{ \cancel{2}}   +  1  }   \\

 \longrightarrow \frac{ \frac{5}{ \sqrt{2} }  \times  \frac{ \sqrt{2} }{ \sqrt{2} }  +   \frac{1}{ {2} }   -  \frac{4}{ {3} }  }{ \frac{ \cancel{2}}{ \sqrt{2} } \times  \frac{ \sqrt{3} }{ \cancel{2}}   +  1  }   \\

 \longrightarrow \frac{ \frac{5 \sqrt{2} }{ {2} }   +   \frac{1}{ {2} }   -  \frac{4}{ {3} }  }{   \frac{ \sqrt{3} }{ \sqrt{2} }    +  1  }   \\

 \longrightarrow \frac{ \frac{5 \sqrt{2} }{ {2} }   +   \frac{1}{ {2} }   -  \frac{4}{ {3} }  }{   \frac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{2} }     }   \\

 \longrightarrow  [ \frac{5 \sqrt{2} + 3  - 8}{6} ]  \times  \frac{ \sqrt{2} }{ \sqrt{3}  +  \sqrt{2} }  \\

 \longrightarrow  [ \frac{5 \sqrt{2}  - 5}{6} ]  \times  \frac{ \sqrt{2} }{ \sqrt{3}  +  \sqrt{2} }  \\

 \longrightarrow   \frac{ \sqrt{2} (5 \sqrt{2}  - 5)}{6( \sqrt{3}  +  \sqrt{2} )} \\

 \longrightarrow   \frac{ 10  - 5 \sqrt{2} }{6( \sqrt{3}  +  \sqrt{2} )} \\

 \longrightarrow   \frac{ 10  - 5 \sqrt{2} }{6( \sqrt{3}  +  \sqrt{2} )} \times  \frac{ \sqrt{3} -  \sqrt{2}  }{ \sqrt{3} -  \sqrt{2}  }  \\

 \longrightarrow   \frac{ (10  - 5 \sqrt{2} )( \sqrt{3}  -  \sqrt{2}) }{6( 3 - 2)}   \\

 \longrightarrow   \frac{ 10( \sqrt{3} -  \sqrt{2} )   - 5 \sqrt{2}( \sqrt{3}  -  \sqrt{2} ) }{6}   \\

 \longrightarrow   \frac{ 10\sqrt{3} -  10\sqrt{2}    - 5 \sqrt{6}  -  10}{6}   \\

 \longrightarrow   \frac{ 5(2\sqrt{3} -  2\sqrt{2}    - \sqrt{6}  -  2)}{6}   \\

 \longrightarrow   \frac{ 5}{6}(2\sqrt{3} -  2\sqrt{2}    - \sqrt{6}  -  2)   \\

Similar questions
Math, 8 months ago