5sinx+12cosx=7 then5 cosx-12sinx=?
Answers
Step-by-step explanation:
The maximum value for 5 \sin x+12 \cos x + 135sinx+12cosx+13 is 18 and the minimum value for 5 \sin x+12 \cos x + 135sinx+12cosx+13 is 25
To find:
The maximum and minimum values of 5 \sin x+12 \cos x + 135sinx+12cosx+13
Solution:
Given that
5 \sin x+12 \cos x + 135sinx+12cosx+13
The minimum value means zero and the maximum value means 90.
If the function,y=f(x)y=f(x) , by using differentiation we will find the maximum and minimum value.
Maximum and minimum occur when \mathrm { f } ^ { \prime } ( \mathrm { x } ) = 0 \text { i.e. } \frac { \mathrm { dy } } { \mathrm { dx } } = 0f
′
(x)=0 i.e.
dx
dy
=0
x = a is a maximum
\text { if } \mathrm { f } ^ { \prime } ( \mathrm { a } ) = 0 \text { and } \mathrm { f } ^ { \prime \prime } ( \mathrm { a } ) < 0 if f
′
(a)=0 and f
′′
(a)<0
x=a is a minimum
\text { if } f ^ { \prime } ( a ) = 0 \text { and } f ^ { \prime \prime } ( a ) > 0 if f
′
(a)=0 and f
′′
(a)>0
Maximum value of x=90
\begin{lgathered}\begin{array} { l } { = 5 \sin 90 + 12 \cos 90 + 13 } \\\\ { = 5 \times 1 + 12 \times 0 + 13 } \\\\ { = 5 + 13 } \\\\ { = 18 } \\\\ { 5 \sin x + 12 \cos x + 13 = 18 } \end{array}\end{lgathered}
=5sin90+12cos90+13
=5×1+12×0+13
=5+13
=18
5sinx+12cosx+13=18
Minimum value of the x=0
\begin{lgathered}\begin{array} { l } { = 5 \times \sin 0 + 12 \times \cos 0 + 13 } \\\\ { = 5 \times 0 + 12 \times 1 + 13 } \\\\ { = 0 + 12 + 13 } \\\\ { = 25 } \end{array}\end{lgathered}
=5×sin0+12×cos0+13
=5×0+12×1+13
=0+12+13
=25
Result:
The maximum value for 5 \sin x+12 \cos x + 135sinx+12cosx+13 is 18 and the minimum value for 5 \sin x+12 \cos x + 135sinx+12cosx+13 is 25
Answer:
Step-by-step explanation:
5sinx+12cosx=13
differentiate with respect to x
5(cosx)+12(-sinx)=0
5cosx-12sinx=0