Math, asked by vijaykr0791, 1 year ago

5tan=3,find 5sin-3cos/5sin+3cos

Answers

Answered by hukam0685
13
hey ,here is the solution
Attachments:
Answered by TheMist
271

\huge \sf \underline{Answer}:

\large ::\implies\sf \frac{5Sin\theta-3Cos\theta}{5Sin\theta+3Cos\theta} = 0

\\ \\ \huge \sf \underline{Solution}:

 \large \sf \underline{Given}:

\large \bf 5tan\theta=3

 \\ \large \sf \underline{To \: find}:

 \sf\bigstar\large \frac{5Sin\theta-3Cos\theta}{5Sin\theta+3Cos\theta}

So,

\large \sf 5tan\theta=3 \\ \sf \implies tan\theta=\frac{3}{5} \\ \implies \frac{sin\theta}{Cos\theta}=\boxed{\sf \frac{3}{5}}

Now ,

 \\ \large \implies\sf \frac{5Sin\theta-3Cos\theta}{5Sin\theta+3Cos\theta}\\

\sf \colorbox{skyblue}{Dividing \: Numerator  \: and \: denominator \: by \: Cos\theta}

\\ \large\sf ::\implies \frac{5\frac{Sin\theta}{cos\theta}-3\frac{\cancel{Cos\theta}}{\cancel{cos\theta}}}{5\frac{Sin\theta}{cos\theta}+3\frac{\cancel{Cos\theta}}{\cancel{cos\theta}}} \\

\\ \bf Putting \frac{sin\theta}{cos\theta}=\frac{3}{5} \\

 \\ \large :: \implies \frac{\cancel{5}×\frac{3}{\cancel{5}}-3}{\cancel{5}×\frac{3}{\cancel{5}}+3} \\ \\ \large\implies\sf\frac{3-3}{3+3}\\ \\ \large\implies\sf\frac{0}{6} \\ \\ \large\implies\sf 0

━━━━━━━━━━━━━━━━━━━

Attachments:
Similar questions